PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1385.
Published online 2008 July 5. doi:  10.1107/S1600536808019582
PMCID: PMC2962018

6-De­oxy-α-l-talopyran­ose

Abstract

X-ray crystallography showed that the title compound, C6H12O5, crystallizes in the α-pyran­ose form with the six-membered ring in a chair conformation. The crystal structure exists as a three-dimensional hydrogen-bonded network of mol­ecules with each mol­ecule acting as a donor and aceptor for four hydrogen bonds. The absolute configuration was determined by the use of l-fucose as starting material.

Related literature

For related literature, see: Beadle et al. (1992 [triangle]); Izumori (2002 [triangle], 2006 [triangle]); Granstrom et al. (2004 [triangle]); Yoshihara et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1385-scheme1.jpg

Experimental

Crystal data

  • C6H12O5
  • M r = 164.16
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1385-efi1.jpg
  • a = 6.4939 (3) Å
  • b = 7.4874 (4) Å
  • c = 14.8382 (8) Å
  • V = 721.47 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 150 K
  • 0.25 × 0.25 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]) T min = 0.97, T max = 1.00 (expected range = 0.967–0.997)
  • 4390 measured reflections
  • 968 independent reflections
  • 863 reflections with I > 2.0σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.072
  • S = 1.03
  • 968 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Nonius, 1997–2001 [triangle]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019582/lh2652sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019582/lh2652Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the Oxford University Chemical Crystallography service for use of the instruments. This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

supplementary crystallographic information

Comment

The range of rare sugars that are now readily available has increased in recent years due to both chemical (Beadle et al., 1992) and biotechnological (Izumori, 2006; Izumori, 2002; Granstrom et al., 2004) advances. The methodology developed by Izumori et al. for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008) in large amounts in water.

The Izumoring method is demonstrated here with the synthesis of 6-deoxy-L-talose 3 from L-fucose 1(Fig. 1) by a series of isomerizations. Firstly, using D-arabinose isomerase, L-fucose was isomerized to 6-deoxy-L-tagatose 2 and then using L-rhamnose isomerase this was further isomerized to give 6-deoxy-L-talose 3.

6-Deoxy-L-talose crystallizes solely in the α-pyranose form (Fig. 2). The absolute configuration was determined from the starting material. The crystal exists as an hydrogen bonded network with each molecule acting as a donor and acceptor for 4 hydrogen bonds. Non-conventional hydrogen bonds have been ignored.

Experimental

The title compound was recrystallized from methanol: m.p. 120–123°C; [α]D20 -18.6 (c, 0.94 in H2O).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.
Synthetic scheme.
Fig. 2.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 3.
Packing diagram of the title compound projected along the a-axis.

Crystal data

C6H12O5F000 = 352
Mr = 164.16Dx = 1.511 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 890 reflections
a = 6.4939 (3) Åθ = 5–27º
b = 7.4874 (4) ŵ = 0.13 mm1
c = 14.8382 (8) ÅT = 150 K
V = 721.47 (6) Å3Plate, colourless
Z = 40.25 × 0.25 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer863 reflections with I > 2.0σ(I)
Monochromator: graphiteRint = 0.037
T = 150 Kθmax = 27.5º
ω scansθmin = 5.2º
Absorption correction: multi-scanDENZO/SCALEPACK (Otwinowski & Minor, 1997)h = −8→8
Tmin = 0.97, Tmax = 1.00k = −9→9
4390 measured reflectionsl = −19→19
968 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029  Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.04P] ,where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.0002
S = 1.03Δρmax = 0.24 e Å3
968 reflectionsΔρmin = −0.21 e Å3
100 parametersExtinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.95002 (16)0.08900 (18)0.35376 (7)0.0210
C20.7416 (2)0.1250 (2)0.32982 (10)0.0175
C30.6113 (3)0.1509 (3)0.41551 (10)0.0188
O40.65011 (17)0.31964 (16)0.45740 (7)0.0183
C50.6150 (2)0.4717 (2)0.39897 (10)0.0194
C60.6412 (3)0.6382 (3)0.45454 (12)0.0271
C70.7657 (2)0.4593 (2)0.32003 (10)0.0187
C80.7208 (2)0.2889 (3)0.26846 (10)0.0186
O90.85143 (18)0.26675 (18)0.19178 (7)0.0243
O100.97297 (17)0.45445 (18)0.35319 (8)0.0232
O110.40458 (18)0.1333 (2)0.39115 (8)0.0254
H210.69370.01930.29850.0197*
H310.64740.05670.46210.0197*
H510.47560.46750.37730.0236*
H610.61790.74410.41880.0406*
H620.54800.63460.50570.0398*
H630.77910.64520.47430.0401*
H710.75080.56280.27860.0214*
H810.57610.29380.24750.0221*
H70.88260.36640.17530.0374*
H80.98660.19140.36320.0333*
H101.02430.55380.33990.0350*
H10.32580.14360.43830.0408*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0198 (5)0.0204 (7)0.0229 (6)0.0030 (5)−0.0010 (5)−0.0005 (5)
C20.0184 (7)0.0188 (9)0.0153 (7)−0.0001 (8)−0.0013 (6)−0.0015 (6)
C30.0209 (8)0.0186 (9)0.0169 (7)−0.0037 (7)0.0005 (6)−0.0021 (7)
O40.0223 (5)0.0178 (7)0.0150 (5)−0.0008 (5)−0.0006 (5)0.0007 (5)
C50.0220 (8)0.0184 (9)0.0179 (7)0.0019 (8)−0.0015 (7)0.0002 (7)
C60.0378 (10)0.0202 (10)0.0232 (8)0.0022 (9)0.0025 (9)−0.0040 (7)
C70.0183 (7)0.0202 (9)0.0176 (7)0.0031 (7)0.0006 (7)0.0029 (7)
C80.0197 (7)0.0212 (10)0.0149 (7)0.0011 (7)0.0013 (6)−0.0005 (7)
O90.0335 (6)0.0213 (7)0.0180 (5)0.0043 (6)0.0087 (5)0.0025 (5)
O100.0195 (5)0.0195 (7)0.0306 (6)−0.0026 (5)−0.0015 (5)0.0023 (6)
O110.0199 (5)0.0331 (8)0.0233 (5)−0.0074 (6)0.0028 (5)−0.0047 (6)

Geometric parameters (Å, °)

O1—C21.4250 (19)C6—H610.966
O1—H80.815C6—H620.971
C2—C31.540 (2)C6—H630.944
C2—C81.534 (2)C7—C81.516 (2)
C2—H210.969C7—O101.4334 (19)
C3—O41.430 (2)C7—H710.994
C3—O111.3965 (19)C8—O91.4288 (18)
C3—H311.015C8—H810.990
O4—C51.449 (2)O9—H70.811
C5—C61.504 (2)O10—H100.839
C5—C71.529 (2)O11—H10.870
C5—H510.962
C2—O1—H898.1C5—C6—H62109.6
O1—C2—C3109.88 (12)H61—C6—H62110.8
O1—C2—C8112.50 (13)C5—C6—H63108.9
C3—C2—C8109.93 (14)H61—C6—H63105.9
O1—C2—H21105.7H62—C6—H63110.5
C3—C2—H21108.8C5—C7—C8108.34 (14)
C8—C2—H21109.9C5—C7—O10109.84 (12)
C2—C3—O4111.93 (14)C8—C7—O10109.43 (14)
C2—C3—O11107.62 (12)C5—C7—H71111.3
O4—C3—O11111.43 (15)C8—C7—H71109.0
C2—C3—H31110.4O10—C7—H71108.9
O4—C3—H31106.1C2—C8—C7110.89 (12)
O11—C3—H31109.4C2—C8—O9109.12 (13)
C3—O4—C5113.97 (11)C7—C8—O9112.67 (13)
O4—C5—C6107.79 (12)C2—C8—H81107.4
O4—C5—C7108.05 (13)C7—C8—H81108.0
C6—C5—C7113.45 (14)O9—C8—H81108.5
O4—C5—H51108.8C8—O9—H7106.4
C6—C5—H51108.5C7—O10—H10105.7
C7—C5—H51110.1C3—O11—H1110.4
C5—C6—H61111.2

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H7···O1i0.812.042.818 (2)162
O1—H8···C70.822.553.061 (2)122
O1—H8···O100.821.982.740 (2)156
O10—H10···O9i0.841.852.686 (2)177
O11—H1···O4ii0.871.942.812 (2)177

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2652).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5 078 796.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng.97, 89–94. [PubMed]
  • Izumori, K. (2002). Naturwissenschaften, 89, 120–124. [PubMed]
  • Izumori, K. (2006). J. Biotech.124, 717–722. [PubMed]
  • Nonius (1997–2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  • Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography