PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1379–o1380.
Published online 2008 July 5. doi:  10.1107/S1600536808019181
PMCID: PMC2962013

Cytenamide–formic acid (1/1)

Abstract

In the crystal structure of the title compound [systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide–meth­anoic acid (1/1)], C16H13NO·CH2O2, the cytenamide and solvent mol­ecules form a hydrogen-bonded R 2 2(8) dimer motif, which is further connected to form a centrosymmetric double-motif arrangement. The asymmetric unit contains two formula units.

Related literature

For details on experimental methods used to obtain this form, see: Davis et al. (1964 [triangle]); Florence et al. (2003 [triangle]); Florence, Johnston, Fernandes et al. (2006 [triangle]). For related literature on cytenamide, see: Florence, Bedford et al. (2008 [triangle]). For cyten­amide analogues, see: Cyr et al. (1987 [triangle]); Fleischman et al. (2003 [triangle]); Florence, Johnston, Price et al. (2006 [triangle]); Florence, Leech et al. (2007 [triangle]); Bandoli et al. (1992 [triangle]); Harrison et al. (2006 [triangle]); Leech et al. (2006 [triangle]); Florence, Shankland et al. (2008 [triangle]). For graph-set motifs, see: Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1379-scheme1.jpg

Experimental

Crystal data

  • C16H13NO·CH2O2
  • M r = 281.3
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1379-efi1.jpg
  • a = 11.5351 (13) Å
  • b = 13.9095 (15) Å
  • c = 17.6904 (19) Å
  • β = 95.846 (5)°
  • V = 2823.6 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 123 (2) K
  • 0.25 × 0.15 × 0.05 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.978, T max = 0.996
  • 55762 measured reflections
  • 12996 independent reflections
  • 9356 reflections with I > 2/s(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.142
  • S = 1.02
  • 12996 reflections
  • 411 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019181/rn2044sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019181/rn2044Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk) and AstraZeneca for funding GJM.

supplementary crystallographic information

Comment

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). CYT-formic acid solvate was produced during an automated parallel crystallization study (Florence et al., 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price et al., 2006; Florence, Leech et al., 2007) and its closely related analogues: CYT (Florence, Bedford et al., 2008), 10,11-dihydrocarbamazepine (DHC) (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2006) and cyheptamide (Florence, Shankland et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated formic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The molecules crystallize in the space group P21/c with two CYT and two solvent molecules in the asymmetric unit. Both CYT molecules form an R22(8) (Etter, 1990) dimer motif with adjacent solvent molecules via contacts 1 - 4 (Table 1). In addition, two N—H···O contacts (5 and 6) join adjacent dimers to form a R42(8) centrosymmetric double motif (Fig. 2).

This packing arrangement is similar to that in CBZ-formic acid solvate which, in contrast, crystallizes with Z' = 1 in the monoclinic space group P21/c (Fig. 2). The main difference being a doubling of the a axis in CYT-formic acid solvate (Z' = 2) (Fleischman et al., 2003)

Experimental

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of the title compound was recrystallized from a saturated formic acid solution by isothermal solvent evaporation at 278 oK.

Figures

Fig. 1.
The molecular structure and atomic labelling of CYT formic acid, showing 50% probability displacement ellipsoids.
Fig. 2.
The crystal packing in CYT-formic acid (top) and CBZ-formic acid (bottom), viewed down the a-axis. Molecules are coloured according to symmetry equivalence.

Crystal data

C16H13NO·CH2O2F000 = 1184
Mr = 281.3Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9893 reflections
a = 11.5351 (13) Åθ = 2.5–35.6º
b = 13.9095 (15) ŵ = 0.09 mm1
c = 17.6904 (19) ÅT = 123 (2) K
β = 95.846 (5)ºBlock, colourless
V = 2823.6 (5) Å30.25 × 0.15 × 0.05 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer12996 independent reflections
Radiation source: fine-focus sealed tube9356 reflections with I > 2/s(I)
Monochromator: graphiteRint = 0.025
T = 123(2) Kθmax = 35.7º
[var phi] and ω scansθmin = 2.3º
Absorption correction: Multi-scan(SADABS; Sheldrick, 2002)h = −18→18
Tmin = 0.978, Tmax = 0.996k = −18→22
55762 measured reflectionsl = −28→28

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142  w = 1/[σ2(Fo2) + (0.0728P)2 + 0.6562P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
12996 reflectionsΔρmax = 0.58 e Å3
411 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.36614 (7)0.30926 (5)0.65575 (4)0.02658 (15)
O20.10330 (7)0.67015 (5)0.37463 (4)0.02342 (14)
O30.19631 (8)0.37994 (6)0.72402 (4)0.02951 (16)
O40.14455 (7)0.47636 (6)0.62510 (4)0.02896 (16)
O50.30232 (7)0.49021 (6)0.40062 (4)0.03007 (17)
O60.23678 (8)0.57335 (6)0.29680 (4)0.03242 (18)
N10.33490 (8)0.39736 (6)0.54859 (5)0.02341 (16)
N20.11769 (8)0.58059 (5)0.48157 (5)0.02066 (15)
C10.50028 (8)0.29386 (6)0.47664 (5)0.01748 (14)
C20.57461 (8)0.35519 (7)0.44219 (5)0.02202 (17)
H20.63030.39210.47310.026*
C30.56919 (9)0.36362 (8)0.36373 (6)0.02555 (19)
H30.62160.40500.34130.031*
C40.48681 (10)0.31127 (7)0.31820 (6)0.02523 (19)
H40.48260.31660.26450.030*
C50.41066 (9)0.25107 (7)0.35153 (5)0.02272 (17)
H50.35280.21700.32010.027*
C60.41737 (8)0.23938 (6)0.43097 (5)0.01853 (15)
C70.33783 (8)0.17138 (6)0.46164 (6)0.02090 (16)
H70.26390.16410.43320.025*
C80.35587 (9)0.11767 (6)0.52507 (6)0.02140 (16)
H80.29340.07690.53550.026*
C90.45948 (8)0.11419 (6)0.57986 (5)0.02008 (16)
C100.48622 (11)0.02677 (7)0.61783 (6)0.0281 (2)
H100.4344−0.02610.60940.034*
C110.58653 (11)0.01640 (7)0.66714 (6)0.0307 (2)
H110.6032−0.04310.69230.037*
C120.66267 (10)0.09340 (8)0.67957 (6)0.0282 (2)
H120.73290.08610.71200.034*
C130.63592 (9)0.18121 (7)0.64440 (5)0.02332 (17)
H130.68770.23400.65370.028*
C140.53432 (8)0.19277 (6)0.59577 (5)0.01848 (15)
C150.50395 (8)0.29080 (6)0.56232 (5)0.01808 (15)
H150.56920.33430.58190.022*
C160.39403 (8)0.33227 (6)0.59203 (5)0.01896 (15)
C17−0.00637 (8)0.82307 (6)0.44107 (5)0.01786 (15)
C18−0.10409 (9)0.85561 (7)0.39547 (5)0.02321 (17)
H18−0.17080.81550.38720.028*
C19−0.10533 (10)0.94622 (8)0.36176 (6)0.0293 (2)
H19−0.17340.96830.33210.035*
C20−0.00710 (11)1.00399 (7)0.37167 (6)0.0306 (2)
H20−0.00701.06540.34810.037*
C210.09067 (10)0.97183 (7)0.41602 (6)0.0263 (2)
H210.15851.01100.42160.032*
C220.09204 (8)0.88216 (6)0.45311 (5)0.01954 (16)
C230.19633 (9)0.85676 (7)0.50299 (6)0.02165 (16)
H230.26790.88120.48870.026*
C240.20378 (8)0.80303 (6)0.56672 (5)0.02076 (16)
H240.27990.79460.59180.025*
C250.10967 (8)0.75612 (6)0.60205 (5)0.01819 (15)
C260.12267 (9)0.74452 (7)0.68148 (5)0.02342 (18)
H260.19360.76350.70950.028*
C270.03445 (11)0.70599 (7)0.71980 (5)0.0276 (2)
H270.04460.69960.77350.033*
C28−0.06874 (10)0.67688 (8)0.67918 (6)0.02705 (19)
H28−0.13030.65180.70510.032*
C29−0.08193 (9)0.68443 (7)0.60040 (5)0.02195 (17)
H29−0.15210.66290.57290.026*
C300.00612 (8)0.72303 (6)0.56107 (5)0.01725 (14)
C31−0.00718 (8)0.72319 (6)0.47516 (5)0.01655 (14)
H31−0.08650.69640.45950.020*
C320.07859 (8)0.65615 (6)0.44077 (5)0.01707 (14)
C330.13195 (9)0.44576 (7)0.68783 (6)0.02455 (18)
C340.30291 (11)0.50955 (7)0.33411 (6)0.0285 (2)
H1N0.2766 (13)0.4268 (10)0.5677 (8)0.029 (3)*
H2N0.3531 (13)0.4124 (11)0.5038 (9)0.034 (4)*
H3N0.1661 (13)0.5407 (11)0.4605 (8)0.029 (3)*
H4N0.1007 (13)0.5752 (10)0.5266 (9)0.029 (4)*
H340.3583 (14)0.4788 (12)0.3007 (10)0.043 (4)*
H330.0717 (13)0.4695 (10)0.7176 (8)0.029 (3)*
H1O0.2537 (16)0.3588 (14)0.6949 (10)0.053 (5)*
H2O0.1899 (17)0.6011 (14)0.3288 (11)0.057 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0355 (4)0.0284 (3)0.0168 (3)0.0098 (3)0.0073 (3)0.0041 (2)
O20.0336 (4)0.0227 (3)0.0146 (3)0.0073 (3)0.0055 (3)0.0018 (2)
O30.0336 (4)0.0363 (4)0.0190 (3)0.0070 (3)0.0042 (3)0.0048 (3)
O40.0346 (4)0.0314 (3)0.0216 (3)0.0098 (3)0.0064 (3)0.0046 (3)
O50.0367 (4)0.0318 (4)0.0218 (3)0.0112 (3)0.0033 (3)0.0044 (3)
O60.0484 (5)0.0313 (4)0.0181 (3)0.0163 (3)0.0061 (3)0.0017 (3)
N10.0319 (4)0.0219 (3)0.0171 (3)0.0081 (3)0.0055 (3)0.0027 (3)
N20.0279 (4)0.0188 (3)0.0154 (3)0.0048 (3)0.0030 (3)0.0018 (2)
C10.0186 (4)0.0186 (3)0.0152 (3)0.0005 (3)0.0015 (3)0.0000 (3)
C20.0198 (4)0.0244 (4)0.0219 (4)−0.0018 (3)0.0023 (3)0.0028 (3)
C30.0260 (5)0.0298 (4)0.0220 (4)0.0015 (4)0.0080 (4)0.0050 (3)
C40.0325 (5)0.0270 (4)0.0169 (4)0.0063 (4)0.0064 (3)0.0006 (3)
C50.0285 (5)0.0217 (4)0.0176 (4)0.0025 (3)0.0005 (3)−0.0035 (3)
C60.0198 (4)0.0181 (3)0.0177 (4)0.0011 (3)0.0022 (3)−0.0019 (3)
C70.0201 (4)0.0200 (3)0.0222 (4)−0.0022 (3)0.0005 (3)−0.0029 (3)
C80.0218 (4)0.0189 (3)0.0239 (4)−0.0020 (3)0.0042 (3)−0.0019 (3)
C90.0233 (4)0.0186 (3)0.0188 (4)0.0018 (3)0.0045 (3)−0.0006 (3)
C100.0395 (6)0.0184 (4)0.0266 (5)0.0036 (4)0.0037 (4)0.0008 (3)
C110.0432 (6)0.0241 (4)0.0245 (5)0.0135 (4)0.0020 (4)0.0023 (3)
C120.0300 (5)0.0342 (5)0.0204 (4)0.0128 (4)0.0019 (4)0.0017 (4)
C130.0219 (4)0.0305 (4)0.0175 (4)0.0035 (3)0.0016 (3)0.0014 (3)
C140.0195 (4)0.0208 (3)0.0155 (3)0.0020 (3)0.0038 (3)0.0000 (3)
C150.0198 (4)0.0187 (3)0.0156 (3)−0.0019 (3)0.0007 (3)−0.0004 (3)
C160.0250 (4)0.0168 (3)0.0149 (3)0.0008 (3)0.0012 (3)−0.0018 (3)
C170.0212 (4)0.0191 (3)0.0137 (3)0.0049 (3)0.0042 (3)0.0008 (3)
C180.0239 (4)0.0300 (4)0.0160 (4)0.0089 (3)0.0034 (3)0.0027 (3)
C190.0377 (6)0.0325 (5)0.0186 (4)0.0182 (4)0.0071 (4)0.0063 (3)
C200.0505 (7)0.0216 (4)0.0219 (4)0.0135 (4)0.0140 (4)0.0056 (3)
C210.0401 (6)0.0175 (3)0.0232 (4)0.0015 (3)0.0123 (4)0.0011 (3)
C220.0254 (4)0.0172 (3)0.0170 (4)0.0030 (3)0.0069 (3)0.0000 (3)
C230.0218 (4)0.0209 (3)0.0228 (4)−0.0014 (3)0.0053 (3)−0.0028 (3)
C240.0191 (4)0.0214 (3)0.0214 (4)0.0011 (3)0.0004 (3)−0.0034 (3)
C250.0224 (4)0.0174 (3)0.0144 (3)0.0031 (3)0.0004 (3)−0.0015 (3)
C260.0310 (5)0.0224 (4)0.0160 (4)0.0028 (3)−0.0021 (3)−0.0026 (3)
C270.0418 (6)0.0274 (4)0.0138 (4)0.0026 (4)0.0045 (4)−0.0012 (3)
C280.0345 (5)0.0297 (4)0.0182 (4)−0.0001 (4)0.0091 (4)0.0016 (3)
C290.0244 (4)0.0245 (4)0.0175 (4)−0.0001 (3)0.0046 (3)0.0013 (3)
C300.0208 (4)0.0172 (3)0.0139 (3)0.0020 (3)0.0022 (3)0.0001 (3)
C310.0180 (4)0.0187 (3)0.0129 (3)0.0008 (3)0.0013 (3)0.0005 (3)
C320.0200 (4)0.0168 (3)0.0141 (3)0.0006 (3)0.0002 (3)−0.0005 (3)
C330.0256 (5)0.0288 (4)0.0190 (4)0.0013 (3)0.0014 (3)−0.0025 (3)
C340.0377 (6)0.0260 (4)0.0221 (4)0.0095 (4)0.0044 (4)−0.0006 (3)

Geometric parameters (Å, °)

O1—C161.2451 (11)C12—H120.9500
O2—C321.2473 (11)C13—C141.3907 (13)
O3—C331.3047 (13)C13—H130.9500
O3—H1O0.926 (19)C14—C151.5132 (12)
O4—C331.2111 (13)C15—C161.5338 (13)
O5—C341.2076 (13)C15—H151.0000
O6—C341.3048 (13)C17—C181.3932 (13)
O6—H2O0.91 (2)C17—C221.4000 (13)
N1—C161.3300 (12)C17—C311.5149 (12)
N1—H1N0.884 (15)C18—C191.3937 (14)
N1—H2N0.866 (16)C18—H180.9500
N2—C321.3277 (11)C19—C201.3855 (19)
N2—H3N0.895 (15)C19—H190.9500
N2—H4N0.843 (15)C20—C211.3811 (16)
C1—C21.3931 (13)C20—H200.9500
C1—C61.4086 (12)C21—C221.4087 (13)
C1—C151.5126 (12)C21—H210.9500
C2—C31.3879 (14)C22—C231.4611 (14)
C2—H20.9500C23—C241.3480 (14)
C3—C41.3878 (15)C23—H230.9500
C3—H30.9500C24—C251.4604 (13)
C4—C51.3877 (15)C24—H240.9500
C4—H40.9500C25—C261.4072 (13)
C5—C61.4091 (13)C25—C301.4099 (13)
C5—H50.9500C26—C271.3867 (16)
C6—C71.4601 (13)C26—H260.9500
C7—C81.3465 (14)C27—C281.3867 (16)
C7—H70.9500C27—H270.9500
C8—C91.4608 (14)C28—C291.3904 (14)
C8—H80.9500C28—H280.9500
C9—C141.4034 (13)C29—C301.3956 (13)
C9—C101.4082 (13)C29—H290.9500
C10—C111.3838 (16)C30—C311.5119 (12)
C10—H100.9500C31—C321.5300 (12)
C11—C121.3883 (17)C31—H311.0000
C11—H110.9500C33—H330.972 (15)
C12—C131.3911 (14)C34—H341.008 (17)
C33—O3—H1O110.6 (11)N1—C16—C15116.82 (8)
C34—O6—H2O109.2 (12)C18—C17—C22119.54 (8)
C16—N1—H1N117.3 (9)C18—C17—C31119.41 (8)
C16—N1—H2N122.4 (10)C22—C17—C31121.04 (8)
H1N—N1—H2N120.3 (14)C17—C18—C19120.93 (10)
C32—N2—H3N117.1 (9)C17—C18—H18119.5
C32—N2—H4N119.1 (10)C19—C18—H18119.5
H3N—N2—H4N123.6 (13)C20—C19—C18119.85 (10)
C2—C1—C6119.38 (8)C20—C19—H19120.1
C2—C1—C15120.00 (8)C18—C19—H19120.1
C6—C1—C15120.50 (8)C21—C20—C19119.61 (9)
C3—C2—C1121.48 (9)C21—C20—H20120.2
C3—C2—H2119.3C19—C20—H20120.2
C1—C2—H2119.3C20—C21—C22121.40 (10)
C4—C3—C2119.63 (9)C20—C21—H21119.3
C4—C3—H3120.2C22—C21—H21119.3
C2—C3—H3120.2C17—C22—C21118.59 (9)
C5—C4—C3119.71 (9)C17—C22—C23123.70 (8)
C5—C4—H4120.1C21—C22—C23117.70 (9)
C3—C4—H4120.1C24—C23—C22128.14 (9)
C4—C5—C6121.37 (9)C24—C23—H23115.9
C4—C5—H5119.3C22—C23—H23115.9
C6—C5—H5119.3C23—C24—C25128.22 (9)
C1—C6—C5118.36 (8)C23—C24—H24115.9
C1—C6—C7123.44 (8)C25—C24—H24115.9
C5—C6—C7118.20 (8)C26—C25—C30118.33 (9)
C8—C7—C6128.27 (9)C26—C25—C24118.05 (8)
C8—C7—H7115.9C30—C25—C24123.61 (8)
C6—C7—H7115.9C27—C26—C25121.58 (9)
C7—C8—C9128.16 (9)C27—C26—H26119.2
C7—C8—H8115.9C25—C26—H26119.2
C9—C8—H8115.9C28—C27—C26119.57 (9)
C14—C9—C10118.46 (9)C28—C27—H27120.2
C14—C9—C8123.52 (8)C26—C27—H27120.2
C10—C9—C8118.02 (9)C27—C28—C29119.86 (10)
C11—C10—C9121.28 (10)C27—C28—H28120.1
C11—C10—H10119.4C29—C28—H28120.1
C9—C10—H10119.4C28—C29—C30121.19 (9)
C10—C11—C12119.63 (9)C28—C29—H29119.4
C10—C11—H11120.2C30—C29—H29119.4
C12—C11—H11120.2C29—C30—C25119.38 (8)
C11—C12—C13119.91 (10)C29—C30—C31119.82 (8)
C11—C12—H12120.0C25—C30—C31120.68 (8)
C13—C12—H12120.0C30—C31—C17113.42 (7)
C14—C13—C12120.85 (10)C30—C31—C32113.29 (7)
C14—C13—H13119.6C17—C31—C32111.73 (7)
C12—C13—H13119.6C30—C31—H31105.9
C13—C14—C9119.76 (8)C17—C31—H31105.9
C13—C14—C15119.54 (8)C32—C31—H31105.9
C9—C14—C15120.68 (8)O2—C32—N2122.41 (8)
C1—C15—C14113.51 (7)O2—C32—C31119.78 (7)
C1—C15—C16113.15 (7)N2—C32—C31117.64 (8)
C14—C15—C16111.80 (7)O4—C33—O3125.51 (10)
C1—C15—H15105.9O4—C33—H33122.5 (9)
C14—C15—H15105.9O3—C33—H33112.0 (9)
C16—C15—H15105.9O5—C34—O6125.69 (10)
O1—C16—N1122.24 (9)O5—C34—H34122.9 (10)
O1—C16—C15120.82 (8)O6—C34—H34111.4 (9)
C6—C1—C2—C3−0.25 (14)C22—C17—C18—C19−0.09 (13)
C15—C1—C2—C3−176.46 (9)C31—C17—C18—C19−178.49 (8)
C1—C2—C3—C41.11 (15)C17—C18—C19—C201.91 (15)
C2—C3—C4—C50.03 (15)C18—C19—C20—C21−1.09 (15)
C3—C4—C5—C6−2.05 (15)C19—C20—C21—C22−1.53 (15)
C2—C1—C6—C5−1.70 (13)C18—C17—C22—C21−2.46 (13)
C15—C1—C6—C5174.50 (8)C31—C17—C22—C21175.92 (8)
C2—C1—C6—C7178.35 (9)C18—C17—C22—C23176.71 (8)
C15—C1—C6—C7−5.46 (13)C31—C17—C22—C23−4.92 (13)
C4—C5—C6—C12.87 (14)C20—C21—C22—C173.31 (14)
C4—C5—C6—C7−177.17 (9)C20—C21—C22—C23−175.91 (9)
C1—C6—C7—C8−31.43 (15)C17—C22—C23—C24−31.25 (15)
C5—C6—C7—C8148.62 (10)C21—C22—C23—C24147.93 (10)
C6—C7—C8—C90.51 (16)C22—C23—C24—C250.29 (16)
C7—C8—C9—C1430.22 (15)C23—C24—C25—C26−149.76 (10)
C7—C8—C9—C10−148.87 (10)C23—C24—C25—C3029.39 (14)
C14—C9—C10—C11−2.97 (15)C30—C25—C26—C27−3.13 (13)
C8—C9—C10—C11176.17 (10)C24—C25—C26—C27176.06 (9)
C9—C10—C11—C12−0.07 (16)C25—C26—C27—C280.85 (15)
C10—C11—C12—C132.07 (16)C26—C27—C28—C291.48 (15)
C11—C12—C13—C14−0.98 (15)C27—C28—C29—C30−1.49 (15)
C12—C13—C14—C9−2.12 (14)C28—C29—C30—C25−0.84 (13)
C12—C13—C14—C15176.15 (9)C28—C29—C30—C31175.30 (9)
C10—C9—C14—C134.02 (14)C26—C25—C30—C293.08 (12)
C8—C9—C14—C13−175.07 (9)C24—C25—C30—C29−176.06 (8)
C10—C9—C14—C15−174.22 (9)C26—C25—C30—C31−173.03 (8)
C8—C9—C14—C156.69 (14)C24—C25—C30—C317.83 (12)
C2—C1—C15—C14−119.84 (9)C29—C30—C31—C17119.16 (9)
C6—C1—C15—C1463.99 (11)C25—C30—C31—C17−64.75 (10)
C2—C1—C15—C16111.37 (9)C29—C30—C31—C32−112.12 (9)
C6—C1—C15—C16−64.80 (10)C25—C30—C31—C3263.98 (10)
C13—C14—C15—C1117.00 (9)C18—C17—C31—C30−118.43 (9)
C9—C14—C15—C1−64.75 (11)C22—C17—C31—C3063.20 (11)
C13—C14—C15—C16−113.52 (9)C18—C17—C31—C32112.05 (9)
C9—C14—C15—C1664.73 (11)C22—C17—C31—C32−66.32 (10)
C1—C15—C16—O1157.50 (8)C30—C31—C32—O2−157.63 (8)
C14—C15—C16—O127.83 (12)C17—C31—C32—O2−28.05 (11)
C1—C15—C16—N1−26.25 (11)C30—C31—C32—N226.99 (11)
C14—C15—C16—N1−155.92 (8)C17—C31—C32—N2156.57 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.884 (15)2.035 (15)2.9096 (12)170.2 (13)
O3—H1O···O10.927 (18)1.679 (19)2.5971 (12)169.9 (18)
O6—H2O···O20.91 (2)1.66 (2)2.5517 (12)168.3 (19)
N2—H3N···O50.895 (15)2.103 (15)2.9645 (12)161.2 (14)
N2—H4N···O40.843 (16)2.237 (15)2.9129 (12)137.3 (13)
N1—H2N···O50.866 (16)2.151 (16)2.9088 (12)145.9 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2044).

References

  • Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr.22, 177–183.
  • Bruker (2007). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem.70, 836–840. [PubMed]
  • Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem.7, 88–94. [PubMed]
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des.3, 909–919.
  • Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [PubMed]
  • Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm DOI: 10.1039/b719717a.
  • Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst.39, 922–924.
  • Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci.95, 1918–1930. [PubMed]
  • Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.
  • Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.
  • Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242. [PubMed]
  • Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography