PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1466.
Published online 2008 July 12. doi:  10.1107/S1600536808020953
PMCID: PMC2962007

4-(Dimethyl­amino)phenyl phenyl ketone

Abstract

In the crystal structure of the title compound, C15H15NO, the two benzene rings are twisted from each other by a dihedral angle of 47.97 (4)°. The crystal structure is stabilized by weak inter­molecular C—H(...)O and C—H(...)π inter­actions, and π–π inter­actions with a centroid–centroid distance of 3.8493 (5) Å are observed.

Related literature

For related literature on non-linear optical properties of benzophenone, see: Arivanandhan et al. (2006 [triangle]); Szyrszyng et al. (2004 [triangle]); Vijayan et al. (2002 [triangle]) & Wang et al., (2007 [triangle]). For bond-length data see: Allen et al. (1987 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-64-o1466-scheme1.jpg

Experimental

Crystal data

  • C15H15NO
  • M r = 225.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1466-efi1.jpg
  • a = 13.0575 (3) Å
  • b = 7.7456 (2) Å
  • c = 12.4931 (3) Å
  • β = 111.717 (1)°
  • V = 1173.85 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100.0 (1) K
  • 0.60 × 0.43 × 0.28 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.939, T max = 0.977
  • 22302 measured reflections
  • 5156 independent reflections
  • 4138 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.138
  • S = 1.06
  • 5156 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020953/at2585sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020953/at2585Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Benzophenone and its derivatives exhibits non-linear optical properties (Wang et al., 2007; Vijayan et al., 2002 & Arivanandhan et al., 2006) and are good candidates for the non-linear optical applications (Szyrszyng et al., 2004). In view of the importance of the benzophenone derivatives, the crystal structure of the title compound (I) has been elucidated.

The asymmetric unit of (I) consists of one molecule of 4-(dimethylamino)benzophenone. Bond lengths and angles in the molecule are found to have normal values (Allen et al., 1987) The dihedral angle formed by the rings (C1–C6) and (C8–C13) is 47.97 (4)° indicating that the rings are twisted from each other. The crystal packing (Fig.2) is consolidated by intermolecular C—H···O hydrogen bonds and C—H···π interactions. π–π interactions with the centroid to centroid distance of 3.8493 (5)Å are observed.

Experimental

4-(Dimethylamino)benzophenone was purchased from Aldrich and dissolved in ethanol. The solution was allowed to evaporate slowly. Colourless crystals were obtained after a month.

Refinement

H atoms were positioned geometrically [C—H = 0.93Å and CH3=0.96 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was considered for the methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H15NOF000 = 480
Mr = 225.28Dx = 1.275 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8685 reflections
a = 13.0575 (3) Åθ = 3.1–38.7º
b = 7.7456 (2) ŵ = 0.08 mm1
c = 12.4931 (3) ÅT = 100.0 (1) K
β = 111.7170 (10)ºBlock, colourless
V = 1173.85 (5) Å30.60 × 0.43 × 0.28 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5156 independent reflections
Radiation source: fine-focus sealed tube4138 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 100.0(1) Kθmax = 35.0º
[var phi] and ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −21→19
Tmin = 0.939, Tmax = 0.977k = −10→12
22302 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.138  w = 1/[σ2(Fo2) + (0.0744P)2 + 0.1876P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5156 reflectionsΔρmax = 0.42 e Å3
156 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.26958 (5)0.42158 (10)0.20400 (5)0.02533 (15)
N1−0.10640 (5)0.34279 (10)0.40740 (6)0.01934 (14)
C10.43352 (6)0.31796 (11)0.49440 (7)0.01861 (15)
H10.39330.37650.53080.022*
C20.53797 (7)0.25436 (12)0.55889 (7)0.02153 (16)
H20.56770.27140.63820.026*
C30.59761 (7)0.16567 (12)0.50493 (8)0.02318 (17)
H30.66680.12150.54840.028*
C40.55457 (7)0.14235 (12)0.38612 (8)0.02373 (17)
H40.59480.08330.35000.028*
C50.45115 (7)0.20786 (11)0.32186 (7)0.02078 (16)
H50.42280.19420.24230.025*
C60.38907 (6)0.29412 (10)0.37532 (7)0.01685 (14)
C70.27935 (6)0.36465 (10)0.29960 (7)0.01733 (14)
C80.18415 (6)0.36068 (10)0.33575 (6)0.01575 (14)
C90.08856 (6)0.44970 (10)0.26790 (7)0.01806 (15)
H90.08970.51410.20550.022*
C10−0.00688 (6)0.44473 (11)0.29074 (7)0.01847 (15)
H10−0.06870.50520.24360.022*
C11−0.01199 (6)0.34866 (10)0.38509 (6)0.01540 (14)
C120.08462 (6)0.25969 (10)0.45427 (6)0.01625 (14)
H120.08430.19630.51740.019*
C130.17938 (6)0.26547 (10)0.42967 (6)0.01610 (14)
H130.24140.20510.47630.019*
C14−0.11461 (7)0.24089 (12)0.50120 (7)0.02242 (16)
H14A−0.04650.24790.56640.034*
H14B−0.12920.12270.47730.034*
H14C−0.17350.28460.52200.034*
C15−0.20773 (7)0.41652 (14)0.32699 (8)0.02666 (19)
H15A−0.19860.53870.32130.040*
H15B−0.26660.39500.35380.040*
H15C−0.22500.36460.25260.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0234 (3)0.0354 (4)0.0184 (3)−0.0007 (2)0.0091 (2)0.0074 (2)
N10.0154 (3)0.0231 (3)0.0193 (3)0.0014 (2)0.0062 (2)0.0022 (2)
C10.0176 (3)0.0211 (3)0.0172 (3)−0.0011 (3)0.0065 (3)−0.0014 (3)
C20.0176 (3)0.0274 (4)0.0181 (3)−0.0012 (3)0.0049 (3)0.0009 (3)
C30.0168 (3)0.0271 (4)0.0261 (4)0.0013 (3)0.0086 (3)0.0050 (3)
C40.0208 (3)0.0280 (4)0.0262 (4)0.0017 (3)0.0133 (3)0.0007 (3)
C50.0204 (3)0.0254 (4)0.0190 (3)−0.0013 (3)0.0102 (3)−0.0012 (3)
C60.0162 (3)0.0185 (3)0.0166 (3)−0.0019 (2)0.0070 (2)0.0003 (2)
C70.0183 (3)0.0180 (3)0.0156 (3)−0.0021 (2)0.0062 (3)0.0002 (2)
C80.0162 (3)0.0163 (3)0.0143 (3)−0.0005 (2)0.0051 (2)0.0006 (2)
C90.0195 (3)0.0184 (3)0.0152 (3)0.0006 (2)0.0052 (3)0.0031 (2)
C100.0176 (3)0.0193 (3)0.0167 (3)0.0026 (2)0.0042 (3)0.0029 (3)
C110.0154 (3)0.0149 (3)0.0148 (3)−0.0003 (2)0.0043 (2)−0.0019 (2)
C120.0170 (3)0.0169 (3)0.0148 (3)0.0006 (2)0.0058 (2)0.0016 (2)
C130.0158 (3)0.0164 (3)0.0154 (3)0.0013 (2)0.0049 (2)0.0016 (2)
C140.0229 (3)0.0252 (4)0.0216 (4)−0.0004 (3)0.0112 (3)0.0007 (3)
C150.0158 (3)0.0350 (5)0.0267 (4)0.0032 (3)0.0049 (3)0.0048 (3)

Geometric parameters (Å, °)

O1—C71.2346 (10)C8—C91.4031 (10)
N1—C111.3615 (10)C8—C131.4066 (11)
N1—C141.4494 (11)C9—C101.3781 (11)
N1—C151.4499 (11)C9—H90.9300
C1—C21.3924 (11)C10—C111.4163 (11)
C1—C61.3947 (11)C10—H100.9300
C1—H10.9300C11—C121.4165 (10)
C2—C31.3862 (12)C12—C131.3816 (11)
C2—H20.9300C12—H120.9300
C3—C41.3907 (13)C13—H130.9300
C3—H30.9300C14—H14A0.9600
C4—C51.3868 (12)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.3965 (11)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.4976 (11)C15—H15C0.9600
C7—C81.4716 (11)
C11—N1—C14121.81 (7)C10—C9—C8122.12 (7)
C11—N1—C15120.55 (7)C10—C9—H9118.9
C14—N1—C15116.94 (7)C8—C9—H9118.9
C2—C1—C6120.15 (8)C9—C10—C11120.77 (7)
C2—C1—H1119.9C9—C10—H10119.6
C6—C1—H1119.9C11—C10—H10119.6
C3—C2—C1120.02 (8)N1—C11—C10120.86 (7)
C3—C2—H2120.0N1—C11—C12121.89 (7)
C1—C2—H2120.0C10—C11—C12117.25 (7)
C2—C3—C4120.36 (8)C13—C12—C11121.14 (7)
C2—C3—H3119.8C13—C12—H12119.4
C4—C3—H3119.8C11—C12—H12119.4
C5—C4—C3119.52 (8)C12—C13—C8121.49 (7)
C5—C4—H4120.2C12—C13—H13119.3
C3—C4—H4120.2C8—C13—H13119.3
C4—C5—C6120.76 (8)N1—C14—H14A109.5
C4—C5—H5119.6N1—C14—H14B109.5
C6—C5—H5119.6H14A—C14—H14B109.5
C1—C6—C5119.17 (7)N1—C14—H14C109.5
C1—C6—C7123.28 (7)H14A—C14—H14C109.5
C5—C6—C7117.47 (7)H14B—C14—H14C109.5
O1—C7—C8120.51 (7)N1—C15—H15A109.5
O1—C7—C6118.26 (7)N1—C15—H15B109.5
C8—C7—C6121.18 (7)H15A—C15—H15B109.5
C9—C8—C13117.23 (7)N1—C15—H15C109.5
C9—C8—C7117.90 (7)H15A—C15—H15C109.5
C13—C8—C7124.76 (7)H15B—C15—H15C109.5
C6—C1—C2—C3−0.63 (13)C6—C7—C8—C13−12.54 (12)
C1—C2—C3—C41.18 (13)C13—C8—C9—C10−0.33 (12)
C2—C3—C4—C5−0.29 (14)C7—C8—C9—C10175.94 (7)
C3—C4—C5—C6−1.15 (13)C8—C9—C10—C110.20 (12)
C2—C1—C6—C5−0.79 (12)C14—N1—C11—C10177.99 (7)
C2—C1—C6—C7−177.50 (7)C15—N1—C11—C107.82 (12)
C4—C5—C6—C11.69 (12)C14—N1—C11—C12−1.90 (12)
C4—C5—C6—C7178.59 (8)C15—N1—C11—C12−172.07 (8)
C1—C6—C7—O1141.72 (9)C9—C10—C11—N1−179.62 (7)
C5—C6—C7—O1−35.04 (11)C9—C10—C11—C120.27 (11)
C1—C6—C7—C8−40.56 (11)N1—C11—C12—C13179.28 (7)
C5—C6—C7—C8142.68 (8)C10—C11—C12—C13−0.61 (11)
O1—C7—C8—C9−10.84 (12)C11—C12—C13—C80.49 (12)
C6—C7—C8—C9171.49 (7)C9—C8—C13—C12−0.02 (11)
O1—C7—C8—C13165.13 (8)C7—C8—C13—C12−176.00 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.463.3730 (12)168
C10—H10···Cg2ii0.932.983.6452 (9)130

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2585).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arivanandhan, M., Sanjeeviraja, C., Sankaranarayanan, K., Das, S. K., Samanta, G. K. & Datta, P. K. (2006). Opt. Mater.28, 324–330.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Szyrszyng, M., Nowak, E., Gdaniec, M., Milewska, M. J. & Polonski, T. (2004). Tetrahedron Asymmetry, 15, 103–107.
  • Vijayan, N., Babu, R. R., Gopalakrishnan, R., Dhanuskodi, S. & Ramasamy, P. (2002). J. Cryst. Growth, 236, 407–412.
  • Wang, W., Lin, X. 7 Huang, W. (2007). Opt. Mater.29, 1063–1065.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography