PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1098–m1099.
Published online 2008 July 31. doi:  10.1107/S1600536808023623
PMCID: PMC2962002

catena-Poly[[[diaqua­terbium(III)]-tri-μ2-isonicotinato-κ6 O:O′] tris(perchlorate) monohydrate]

Abstract

In the title complex, {[Tb(C6H5NO2)3(H2O)2](ClO4)3·H2O}n, the TbIII ion is coordinated by six O atoms from six isonicotinate (inic) ligands and two water mol­ecules, displaying a bicapped trigonal-prismatic geometry. The inic ligands, which are protonated at the pyridine N atom, link the metal centres, forming a polymeric chain running parallel to the a axis. The chains are further assembled via intra- and inter­molecular O—H(...)O and N—H(...)O hydrogen-bonding inter­actions into a three-dimensional supra­molecular network involving the inic ligands, the water mol­ecules and the perchlorate anions. One of the perchlorate ions is disordered over two sites with occupancies of 0.561 (17) and 0.439 (17).

Related literature

For related literature, see: Eddaoudi et al. (2001 [triangle]); Rizk et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1098-scheme1.jpg

Experimental

Crystal data

  • [Tb(C6H5NO2)3(H2O)2](ClO4)3·H2O
  • M r = 880.65
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1098-efi1.jpg
  • a = 9.5270 (4) Å
  • b = 10.9508 (4) Å
  • c = 15.1309 (6) Å
  • α = 104.402 (2)°
  • β = 91.480 (2)°
  • γ = 111.159 (2)°
  • V = 1414.17 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.88 mm−1
  • T = 296 (2) K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996 [triangle]) T min = 0.566, T max = 0.645
  • 19700 measured reflections
  • 6605 independent reflections
  • 6206 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.048
  • S = 1.04
  • 6605 reflections
  • 452 parameters
  • 77 restraints
  • H-atom parameters constrained
  • Δρmax = 0.94 e Å−3
  • Δρmin = −0.79 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023623/rz2238sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023623/rz2238Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

The design, synthesis, characterization, and properties of supramolecular networks formed by using functionalized organic molecules as bridges between metal centres are of great interest (Rizk et al., 2005; Eddaoudi et al., 2001). As a building block, isonicotinic acid is an excellent candidate for the construction of supramolecular complexes. Recently, we obtained the title new coordination polymer, whise structure is reported here.

In the title compound, each TbIII centre is coordinated by six oxygen donors of six inic ligands and two water molecules (Fig. 1), and exhibits a bicapped trigonal prismatic coordination geometry. The TbIII ions are linked by inic ligands to form a polymeric chain in the a axis direction. The Tb···Tb separations between adjacent metal atoms are 4.318 (4) and 5.259 (5) Å. Intra- and intermolecular O—H···O and N—H···O hydrogen bonding interaction (Table 1) involving the inic ligands, the water molecules and the perchlorate ions assemble neighboring chains into a three-dimensional supramolecular network (Fig. 2).

Experimental

A mixture of Tb4O7 (0.189 g, 0.25 mmol), isonicotinic acid (0.135 g, 1.5 mmol) and water (10 ml) in the presence of HClO4 (0.385 mmol) was stirred vigorously for 20 min and then sealed into a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated to and maintained at 433 K for 3 days, and then cooled to room temperature at 5 K h-1 to obtain colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement

The disordered perchlorate ion was spli into two components with site occupancy factors of 0.561 (17) and0.439 (17). The Cl···O and O···O distances were restrained to be 1.44 (1) and 2.35 (1) Å, respectively. Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). All other H atoms were placed at calculated positions and were treated as riding with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Only the major component of disorder is shown. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -x, 1-y, 1-z].
Fig. 2.
The supramolecular network of the title compound viewed along the a axis. Only the major componentof disorder is shown.

Crystal data

[Tb(C6H5NO2)3(H2O)2](ClO4)3·H2OZ = 2
Mr = 880.65F000 = 868
Triclinic, P1Dx = 2.068 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.5270 (4) ÅCell parameters from 6377 reflections
b = 10.9508 (4) Åθ = 1.7–28.0º
c = 15.1309 (6) ŵ = 2.88 mm1
α = 104.402 (2)ºT = 296 (2) K
β = 91.480 (2)ºBlock, colourless
γ = 111.159 (2)º0.20 × 0.18 × 0.15 mm
V = 1414.17 (10) Å3

Data collection

Bruker APEXII area-detector diffractometer6605 independent reflections
Radiation source: fine-focus sealed tube6206 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 296(2) Kθmax = 27.8º
[var phi] and ω scanθmin = 2.1º
Absorption correction: multi-scan(SADABS, Sheldrick, 1996)h = −12→12
Tmin = 0.566, Tmax = 0.646k = −14→14
19700 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.048  w = 1/[σ2(Fo2) + (0.021P)2 + 1.1255P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6605 reflectionsΔρmax = 0.95 e Å3
452 parametersΔρmin = −0.79 e Å3
77 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.5075 (3)0.5494 (2)0.34089 (15)0.0209 (4)
C20.5770 (3)0.5734 (2)0.25475 (15)0.0226 (5)
C30.5067 (3)0.6111 (3)0.19077 (17)0.0316 (5)
H30.41470.62090.19970.038*
C40.5740 (4)0.6338 (3)0.11420 (19)0.0421 (7)
H40.52840.66020.07120.051*
C50.7756 (4)0.5802 (3)0.1610 (2)0.0432 (7)
H50.86600.56860.14940.052*
C60.7134 (3)0.5586 (3)0.23913 (19)0.0331 (6)
H60.76260.53410.28150.040*
C70.5896 (3)0.7590 (2)0.58623 (15)0.0212 (4)
C80.6542 (3)0.9101 (2)0.63494 (16)0.0231 (5)
C90.5830 (3)0.9941 (3)0.6193 (2)0.0358 (6)
H90.49240.95810.58000.043*
C100.6474 (4)1.1312 (3)0.6624 (2)0.0416 (7)
H100.60111.18890.65200.050*
C110.8452 (4)1.1036 (3)0.7370 (2)0.0510 (8)
H110.93401.14230.77810.061*
C120.7861 (3)0.9652 (3)0.6950 (2)0.0386 (7)
H120.83470.91010.70710.046*
C13−0.0791 (2)0.3637 (2)0.35190 (15)0.0189 (4)
C14−0.1596 (3)0.2516 (2)0.26504 (15)0.0214 (4)
C15−0.3153 (3)0.2093 (3)0.24151 (18)0.0316 (6)
H15−0.37060.25290.27720.038*
C16−0.3860 (4)0.1024 (3)0.1649 (2)0.0432 (7)
H16−0.49030.07160.14890.052*
C17−0.1552 (4)0.0837 (3)0.13243 (19)0.0426 (7)
H17−0.10230.04130.09340.051*
C18−0.0790 (3)0.1880 (3)0.20941 (17)0.0314 (5)
H180.02520.21550.22390.038*
Cl10.19389 (9)0.70180 (8)0.03011 (5)0.04494 (17)
Cl20.29246 (9)0.22081 (7)0.09772 (5)0.04040 (16)
N10.7053 (3)0.6179 (3)0.10183 (17)0.0461 (7)
H10.74630.63270.05360.055*
N20.7759 (3)1.1812 (2)0.71899 (18)0.0424 (6)
H20.81561.26740.74490.051*
N3−0.3051 (3)0.0434 (2)0.11387 (16)0.0438 (6)
H3A−0.3514−0.02420.06650.053*
O10.3135 (4)0.8310 (3)0.0649 (2)0.0980 (12)
O20.1590 (4)0.6721 (3)−0.06629 (17)0.0719 (8)
O30.0636 (3)0.7009 (3)0.0738 (2)0.0740 (8)
O40.2370 (4)0.5967 (3)0.0487 (2)0.0825 (9)
O50.4033 (3)0.2007 (3)0.03987 (17)0.0615 (7)
O60.2468 (4)0.3225 (3)0.0772 (2)0.0801 (9)
O70.3532 (4)0.2641 (3)0.19129 (16)0.0728 (8)
O80.1675 (3)0.0947 (3)0.0809 (2)0.0852 (10)
O130.37551 (18)0.54575 (17)0.34757 (11)0.0256 (3)
O140.58826 (19)0.53420 (17)0.40081 (11)0.0272 (4)
O150.45551 (18)0.70996 (16)0.54760 (12)0.0265 (4)
O160.67592 (18)0.69729 (16)0.58981 (12)0.0259 (4)
O17−0.14890 (19)0.43444 (17)0.39150 (11)0.0275 (4)
O180.05161 (18)0.37668 (17)0.37767 (12)0.0281 (4)
Tb10.270670 (11)0.491645 (10)0.483309 (7)0.01654 (4)
O1W0.1147 (2)0.53818 (19)0.22458 (14)0.0412 (5)
H1W0.10250.49980.16810.062*
H2W0.17110.51000.25020.062*
O2W0.18165 (19)0.66276 (17)0.44776 (12)0.0298 (4)
H4W0.09050.64790.43330.045*
H3W0.21910.73910.48610.045*
O3W0.0974 (2)0.28637 (18)0.52869 (13)0.0323 (4)
H5W0.13570.25490.56360.048*
H6W0.04900.22130.48320.048*
Cl30.21484 (9)0.04724 (7)0.62478 (5)0.04379 (17)0.561 (17)
O90.3356 (12)0.1332 (11)0.5842 (9)0.062 (3)0.561 (17)
O100.3010 (12)0.0741 (6)0.7152 (4)0.065 (2)0.561 (17)
O110.1764 (12)−0.0885 (8)0.5784 (8)0.066 (2)0.561 (17)
O120.0975 (11)0.0931 (12)0.6326 (9)0.109 (4)0.561 (17)
Cl3'0.21484 (9)0.04724 (7)0.62478 (5)0.04379 (17)0.439 (17)
O9'0.2951 (16)0.1488 (12)0.5860 (10)0.056 (3)0.439 (17)
O10'0.2119 (17)0.0782 (8)0.7181 (5)0.070 (3)0.439 (17)
O11'0.2277 (15)−0.0826 (11)0.5862 (10)0.065 (3)0.439 (17)
O12'0.0520 (9)0.0154 (16)0.5847 (10)0.108 (4)0.439 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0267 (11)0.0172 (10)0.0180 (10)0.0069 (9)0.0022 (8)0.0055 (8)
C20.0243 (11)0.0208 (11)0.0200 (11)0.0060 (9)0.0040 (9)0.0047 (9)
C30.0322 (13)0.0395 (14)0.0264 (13)0.0141 (11)0.0057 (10)0.0141 (11)
C40.0515 (18)0.0481 (17)0.0271 (14)0.0144 (14)0.0052 (12)0.0180 (13)
C50.0402 (16)0.0495 (18)0.0404 (16)0.0183 (14)0.0189 (13)0.0098 (14)
C60.0320 (13)0.0383 (14)0.0327 (14)0.0170 (11)0.0088 (11)0.0104 (11)
C70.0236 (11)0.0185 (10)0.0199 (11)0.0064 (9)0.0062 (8)0.0046 (8)
C80.0238 (11)0.0186 (11)0.0241 (11)0.0067 (9)0.0045 (9)0.0028 (9)
C90.0327 (14)0.0224 (12)0.0481 (17)0.0093 (11)−0.0036 (12)0.0052 (11)
C100.0456 (17)0.0229 (13)0.0564 (19)0.0149 (12)0.0067 (14)0.0085 (12)
C110.0418 (17)0.0331 (16)0.058 (2)0.0070 (13)−0.0149 (15)−0.0099 (14)
C120.0378 (15)0.0268 (13)0.0439 (16)0.0129 (11)−0.0090 (12)−0.0022 (12)
C130.0198 (10)0.0184 (10)0.0178 (10)0.0056 (8)0.0013 (8)0.0065 (8)
C140.0254 (11)0.0209 (11)0.0174 (10)0.0083 (9)0.0008 (8)0.0054 (9)
C150.0279 (13)0.0347 (14)0.0271 (13)0.0088 (11)−0.0016 (10)0.0050 (11)
C160.0391 (16)0.0383 (16)0.0384 (16)0.0031 (13)−0.0131 (12)0.0062 (13)
C170.065 (2)0.0353 (15)0.0265 (14)0.0237 (14)0.0060 (13)−0.0009 (12)
C180.0370 (14)0.0313 (13)0.0256 (12)0.0154 (11)0.0048 (10)0.0041 (10)
Cl10.0505 (4)0.0462 (4)0.0342 (4)0.0140 (3)0.0078 (3)0.0105 (3)
Cl20.0534 (4)0.0382 (4)0.0268 (3)0.0162 (3)0.0091 (3)0.0056 (3)
N10.0547 (16)0.0498 (15)0.0274 (12)0.0105 (13)0.0208 (11)0.0122 (11)
N20.0426 (14)0.0191 (11)0.0502 (15)0.0027 (10)0.0063 (11)−0.0033 (10)
N30.0626 (17)0.0297 (12)0.0244 (12)0.0088 (12)−0.0121 (11)−0.0029 (9)
O10.076 (2)0.072 (2)0.092 (2)−0.0128 (16)0.0228 (18)−0.0111 (17)
O20.122 (2)0.0698 (18)0.0360 (13)0.0448 (17)0.0139 (14)0.0228 (12)
O30.0541 (15)0.089 (2)0.0655 (17)0.0209 (14)0.0186 (13)0.0063 (15)
O40.112 (3)0.099 (2)0.0642 (18)0.065 (2)0.0037 (17)0.0356 (17)
O50.0657 (16)0.0725 (17)0.0480 (14)0.0280 (13)0.0226 (12)0.0155 (12)
O60.116 (3)0.091 (2)0.0670 (18)0.068 (2)0.0267 (17)0.0357 (17)
O70.112 (2)0.0620 (16)0.0280 (12)0.0186 (16)0.0000 (13)0.0070 (11)
O80.0703 (19)0.0567 (17)0.089 (2)−0.0050 (14)0.0157 (16)−0.0055 (15)
O130.0243 (8)0.0332 (9)0.0235 (8)0.0135 (7)0.0070 (6)0.0111 (7)
O140.0298 (9)0.0293 (9)0.0227 (8)0.0099 (7)−0.0030 (7)0.0102 (7)
O150.0225 (8)0.0180 (8)0.0336 (9)0.0046 (6)−0.0021 (7)0.0027 (7)
O160.0263 (9)0.0224 (8)0.0297 (9)0.0125 (7)0.0043 (7)0.0034 (7)
O170.0313 (9)0.0303 (9)0.0231 (8)0.0173 (7)0.0062 (7)0.0026 (7)
O180.0218 (8)0.0278 (9)0.0296 (9)0.0086 (7)−0.0055 (7)0.0014 (7)
Tb10.01613 (6)0.01654 (6)0.01645 (6)0.00657 (4)0.00083 (4)0.00326 (4)
O1W0.0515 (12)0.0314 (10)0.0364 (11)0.0131 (9)−0.0026 (9)0.0068 (8)
O2W0.0266 (9)0.0266 (9)0.0377 (10)0.0130 (7)0.0011 (7)0.0073 (8)
O3W0.0319 (9)0.0255 (9)0.0367 (10)0.0071 (7)0.0033 (8)0.0094 (8)
Cl30.0564 (4)0.0332 (3)0.0465 (4)0.0181 (3)0.0120 (3)0.0168 (3)
O90.067 (5)0.052 (4)0.069 (4)0.017 (3)0.020 (3)0.026 (3)
O100.092 (5)0.047 (3)0.042 (3)0.007 (3)−0.009 (3)0.018 (2)
O110.069 (5)0.027 (3)0.081 (4)0.006 (3)−0.027 (4)−0.001 (2)
O120.083 (5)0.120 (7)0.144 (7)0.066 (5)0.042 (5)0.029 (5)
Cl3'0.0564 (4)0.0332 (3)0.0465 (4)0.0181 (3)0.0120 (3)0.0168 (3)
O9'0.075 (6)0.035 (4)0.056 (4)0.012 (4)0.018 (4)0.024 (3)
O10'0.101 (7)0.052 (4)0.049 (4)0.020 (4)0.018 (4)0.016 (3)
O11'0.067 (6)0.041 (4)0.078 (6)0.022 (4)−0.002 (5)0.000 (3)
O12'0.063 (5)0.128 (8)0.129 (8)0.051 (5)0.002 (5)0.008 (6)

Geometric parameters (Å, °)

C1—O131.251 (3)Cl1—O21.416 (3)
C1—O141.255 (3)Cl1—O11.419 (3)
C1—C21.515 (3)Cl1—O31.419 (3)
C2—C61.385 (3)Cl1—O41.438 (3)
C2—C31.386 (3)Cl2—O71.411 (2)
C3—C41.372 (4)Cl2—O81.419 (3)
C3—H30.9300Cl2—O61.428 (3)
C4—N11.336 (4)Cl2—O51.432 (2)
C4—H40.9300N1—H10.8600
C5—N11.332 (4)N2—H20.8600
C5—C61.370 (4)N3—H3A0.8600
C5—H50.9300O13—Tb12.4189 (16)
C6—H60.9300O14—Tb1i2.3152 (16)
C7—O161.246 (3)O15—Tb12.3406 (15)
C7—O151.254 (3)O16—Tb1i2.3268 (16)
C7—C81.515 (3)O17—Tb1ii2.3702 (16)
C8—C121.375 (4)O18—Tb12.3293 (15)
C8—C91.383 (4)Tb1—O14i2.3152 (16)
C9—C101.372 (4)Tb1—O16i2.3268 (16)
C9—H90.9300Tb1—O17ii2.3701 (16)
C10—N21.327 (4)Tb1—O2W2.4789 (17)
C10—H100.9300Tb1—O3W2.5292 (17)
C11—N21.321 (4)O1W—H1W0.8376
C11—C121.380 (4)O1W—H2W0.8389
C11—H110.9300O2W—H4W0.8361
C12—H120.9300O2W—H3W0.8339
C13—O181.242 (3)O3W—H5W0.8383
C13—O171.250 (3)O3W—H6W0.8343
C13—C141.512 (3)Cl3—O10'1.371 (7)
C14—C181.382 (3)Cl3—O121.378 (6)
C14—C151.391 (3)Cl3—O9'1.378 (9)
C15—C161.372 (4)Cl3—O111.382 (8)
C15—H150.9300Cl3—O11'1.447 (9)
C16—N31.323 (4)Cl3—O91.459 (8)
C16—H160.9300Cl3—O101.484 (6)
C17—N31.333 (4)Cl3—O12'1.534 (8)
C17—C181.373 (4)O10—O10'0.867 (9)
C17—H170.9300O12—O12'0.921 (10)
C18—H180.9300O12—O10'1.745 (12)
O13—C1—O14124.7 (2)C17—N3—H3A118.5
O13—C1—C2118.7 (2)C1—O13—Tb1115.63 (14)
O14—C1—C2116.6 (2)C1—O14—Tb1i177.12 (16)
C6—C2—C3118.9 (2)C7—O15—Tb1136.30 (15)
C6—C2—C1120.1 (2)C7—O16—Tb1i144.47 (15)
C3—C2—C1121.0 (2)C13—O17—Tb1ii152.03 (16)
C4—C3—C2119.5 (3)C13—O18—Tb1148.90 (15)
C4—C3—H3120.3O14i—Tb1—O16i76.86 (6)
C2—C3—H3120.3O14i—Tb1—O18142.30 (6)
N1—C4—C3119.6 (3)O16i—Tb1—O1881.76 (6)
N1—C4—H4120.2O14i—Tb1—O1575.81 (6)
C3—C4—H4120.2O16i—Tb1—O15124.12 (6)
N1—C5—C6119.4 (3)O18—Tb1—O15141.36 (6)
N1—C5—H5120.3O14i—Tb1—O17ii81.73 (6)
C6—C5—H5120.3O16i—Tb1—O17ii140.19 (6)
C5—C6—C2119.8 (3)O18—Tb1—O17ii95.97 (6)
C5—C6—H6120.1O15—Tb1—O17ii81.27 (6)
C2—C6—H6120.1O14i—Tb1—O13122.25 (6)
O16—C7—O15127.4 (2)O16i—Tb1—O1376.08 (6)
O16—C7—C8116.1 (2)O18—Tb1—O1381.06 (6)
O15—C7—C8116.6 (2)O15—Tb1—O1378.95 (6)
C12—C8—C9119.3 (2)O17ii—Tb1—O13143.18 (6)
C12—C8—C7119.7 (2)O14i—Tb1—O2W140.16 (6)
C9—C8—C7121.0 (2)O16i—Tb1—O2W140.79 (6)
C10—C9—C8119.3 (3)O18—Tb1—O2W71.74 (6)
C10—C9—H9120.3O15—Tb1—O2W70.71 (6)
C8—C9—H9120.3O17ii—Tb1—O2W72.52 (6)
N2—C10—C9119.7 (3)O13—Tb1—O2W71.74 (6)
N2—C10—H10120.1O14i—Tb1—O3W73.90 (6)
C9—C10—H10120.1O16i—Tb1—O3W71.06 (6)
N2—C11—C12120.1 (3)O18—Tb1—O3W69.91 (6)
N2—C11—H11120.0O15—Tb1—O3W141.20 (6)
C12—C11—H11120.0O17ii—Tb1—O3W70.93 (6)
C8—C12—C11119.0 (3)O13—Tb1—O3W138.50 (6)
C8—C12—H12120.5O2W—Tb1—O3W122.65 (6)
C11—C12—H12120.5H1W—O1W—H2W107.2
O18—C13—O17125.8 (2)Tb1—O2W—H4W123.7
O18—C13—C14116.4 (2)Tb1—O2W—H3W113.6
O17—C13—C14117.84 (19)H4W—O2W—H3W107.2
C18—C14—C15119.4 (2)Tb1—O3W—H5W118.0
C18—C14—C13120.0 (2)Tb1—O3W—H6W112.5
C15—C14—C13120.6 (2)H5W—O3W—H6W106.9
C16—C15—C14119.1 (3)O10'—Cl3—O1278.8 (5)
C16—C15—H15120.5O10'—Cl3—O9'119.3 (7)
C14—C15—H15120.5O12—Cl3—O9'91.0 (7)
N3—C16—C15119.7 (3)O10'—Cl3—O11117.0 (7)
N3—C16—H16120.2O12—Cl3—O11116.2 (5)
C15—C16—H16120.2O9'—Cl3—O11121.0 (9)
N3—C17—C18119.7 (3)O10'—Cl3—O11'113.6 (7)
N3—C17—H17120.1O12—Cl3—O11'135.4 (6)
C18—C17—H17120.1O9'—Cl3—O11'114.8 (8)
C17—C18—C14119.0 (3)O10'—Cl3—O9121.1 (7)
C17—C18—H18120.5O12—Cl3—O9110.0 (5)
C14—C18—H18120.5O11—Cl3—O9110.2 (6)
O2—Cl1—O1110.4 (2)O11'—Cl3—O999.6 (8)
O2—Cl1—O3109.95 (19)O12—Cl3—O10112.4 (4)
O1—Cl1—O3109.64 (19)O9'—Cl3—O10107.3 (8)
O2—Cl1—O4108.26 (17)O11—Cl3—O10108.0 (5)
O1—Cl1—O4110.4 (2)O11'—Cl3—O1094.6 (6)
O3—Cl1—O4108.2 (2)O9—Cl3—O1098.6 (6)
O7—Cl2—O8108.89 (19)O10'—Cl3—O12'104.2 (6)
O7—Cl2—O6109.02 (18)O9'—Cl3—O12'100.7 (7)
O8—Cl2—O6111.1 (2)O11—Cl3—O12'81.5 (6)
O7—Cl2—O5110.65 (18)O11'—Cl3—O12'100.6 (5)
O8—Cl2—O5108.17 (17)O9—Cl3—O12'116.1 (6)
O6—Cl2—O5109.06 (17)O10—Cl3—O12'138.6 (5)
C5—N1—C4122.8 (2)O10'—O10—Cl365.4 (6)
C5—N1—H1118.6O12'—O12—Cl381.1 (7)
C4—N1—H1118.6O12'—O12—O10'115.2 (10)
C11—N2—C10122.6 (2)Cl3—O12—O10'50.4 (3)
C11—N2—H2118.7O10—O10'—Cl379.5 (7)
C10—N2—H2118.7O10—O10'—O12127.9 (9)
C16—N3—C17123.1 (2)Cl3—O10'—O1250.8 (4)
C16—N3—H3A118.5O12—O12'—Cl362.5 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O6iii0.862.152.949 (4)154
N2—H2···O1Wiv0.861.912.756 (3)166
N3—H3A···O5v0.862.072.902 (3)162
O1W—H1W···O40.842.483.054 (4)127
O1W—H2W···O130.842.263.030 (3)152
O2W—H4W···O3Wii0.842.202.920 (3)145
O2W—H4W···O170.842.533.164 (2)133
O2W—H3W···O11vi0.832.232.959 (9)147
O3W—H5W···O120.842.202.934 (9)146
O3W—H6W···O11vii0.832.142.843 (9)142

Symmetry codes: (iii) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z+1; (v) −x, −y, −z; (ii) −x, −y+1, −z+1; (vi) x, y+1, z; (vii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2238).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  • Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [PubMed]
  • Rizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359–362.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography