PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1096–m1097.
Published online 2008 July 31. doi:  10.1107/S1600536808023684
PMCID: PMC2962001

Bis{(E)-2-eth­oxy-6-[2-(ethyl­ammonio)ethyl­iminometh­yl]phenolato}nickel(II) bis(perchlorate)

Abstract

In the title centrosymmetric mononuclear nickel(II) complex, [Ni(C13H20N2O2)2](ClO4)2, the NiII atom is four-coordinated by the imine N and phenolate O atoms of the zwitterionic forms of two Schiff base ligands in a square-planar coordination geometry. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains running along the a axis.

Related literature

For background to the chemistry of the Schiff base complexes, see: Ali et al. (2008 [triangle]); Biswas et al. (2008 [triangle]); Carlsson et al. (2002 [triangle], 2004 [triangle]); Chen et al. (2008 [triangle]); Darensbourg & Frantz (2007 [triangle]); Habibi et al. (2007 [triangle]); Kawamoto et al. (2008 [triangle]); Tomat et al. (2007 [triangle]); Wu et al. (2008 [triangle]); Yuan et al. (2007 [triangle]). For related structures, see: Ma et al. (2008 [triangle]); Skovsgaard et al. (2005 [triangle]); Zhao (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1096-scheme1.jpg

Experimental

Crystal data

  • [Ni(C13H20N2O2)2](ClO4)2
  • M r = 730.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1096-efi1.jpg
  • a = 8.386 (3) Å
  • b = 8.566 (3) Å
  • c = 21.862 (6) Å
  • β = 99.068 (4)°
  • V = 1550.8 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.87 mm−1
  • T = 298 (2) K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.826, T max = 0.846
  • 12509 measured reflections
  • 3363 independent reflections
  • 2770 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.102
  • S = 1.04
  • 3363 reflections
  • 207 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023684/sj2526sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023684/sj2526Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Nickel(II) is present in the active sites of urease (Carlsson et al., 2002, 2004). In this paper, a new nickel(II) complex, (I), Fig. 1, with the Schiff base ligand (E)-2-ethoxy-6-((3-(methylamino)propylimino)methyl)phenol has been synthesized and structurally characterized.

Complex (I) consists of a centrosymmetric mononuclear nickel(II) complex cation and two perchlorate anions. The NiII atom in the cation, lies on an inversion centre, with the asymmetric unit made up from one half of the Ni(II) complex and one perchlorate anion. The Ni(II) atom is four-coordinated by two imine N and two phenolate O atoms from two zwitterionic Schiff base ligands in a square-planar coordination geometry. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in similar nickel(II) Schiff base complexes (Zhao, 2007; Skovsgaard et al., 2005; Ma et al., 2008).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 2), forming chains running along the a axis (Fig. 2).

Experimental

The Schiff base compound was prepared by the condensation of equimolar amounts of 3-ethoxysalicylaldehyde with N-ethylethane-1,2-diamine in a methanol solution. The complex was prepared by the following method. To a methanol solution (5 ml) of Ni(ClO4)2.6H2O (36.6 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (23.6 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, red block-shaped crystals formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) with ellipsoids drawn at the 30% probability level. Unlabelled atoms are at the symmetry positions 2 - x, 1 - y, - z.
Fig. 2.
The crystal packing of (I), viewed along the c axis.

Crystal data

[Ni(C13H20N2O2)2](ClO4)2F000 = 764
Mr = 730.23Dx = 1.564 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3252 reflections
a = 8.386 (3) Åθ = 2.5–25.4º
b = 8.566 (3) ŵ = 0.87 mm1
c = 21.862 (6) ÅT = 298 (2) K
β = 99.068 (4)ºBlock, red
V = 1550.8 (9) Å30.23 × 0.20 × 0.20 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer3363 independent reflections
Radiation source: fine-focus sealed tube2770 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
T = 298(2) Kθmax = 27.0º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −10→10
Tmin = 0.826, Tmax = 0.846k = −10→10
12509 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102  w = 1/[σ2(Fo2) + (0.0512P)2 + 0.4599P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3363 reflectionsΔρmax = 0.28 e Å3
207 parametersΔρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni11.00000.50000.00000.02592 (13)
Cl10.39043 (7)0.71469 (7)0.09059 (3)0.03882 (17)
O11.06353 (18)0.41002 (18)0.07614 (7)0.0333 (4)
O21.1550 (2)0.2125 (2)0.16406 (8)0.0451 (4)
O30.4539 (3)0.6169 (2)0.04665 (9)0.0624 (6)
O40.5075 (2)0.8315 (2)0.11174 (9)0.0547 (5)
O50.3594 (3)0.6194 (2)0.14062 (9)0.0652 (6)
O60.2480 (3)0.7874 (3)0.06108 (13)0.0790 (7)
N10.8973 (2)0.6697 (2)0.03503 (8)0.0272 (4)
N20.6314 (2)0.7051 (2)−0.07021 (9)0.0342 (4)
H2A0.60310.6259−0.04710.041*
H2B0.71390.6718−0.08860.041*
C10.8960 (3)0.5512 (3)0.13583 (10)0.0307 (5)
C21.0022 (3)0.4303 (3)0.12705 (9)0.0281 (5)
C31.0473 (3)0.3232 (3)0.17637 (10)0.0322 (5)
C40.9828 (3)0.3361 (3)0.22998 (10)0.0385 (6)
H41.01090.26400.26160.046*
C50.8759 (3)0.4560 (3)0.23756 (11)0.0436 (6)
H50.83270.46340.27410.052*
C60.8344 (3)0.5623 (3)0.19183 (11)0.0399 (6)
H60.76440.64330.19760.048*
C70.8602 (3)0.6692 (3)0.09004 (10)0.0308 (5)
H70.80360.75550.10100.037*
C80.8632 (3)0.8182 (2)0.00079 (11)0.0317 (5)
H8A0.93080.8242−0.03130.038*
H8B0.89230.90440.02910.038*
C90.6887 (3)0.8363 (3)−0.02871 (11)0.0333 (5)
H9A0.62190.84360.00360.040*
H9B0.67650.9328−0.05220.040*
C100.4917 (3)0.7422 (3)−0.11922 (13)0.0487 (7)
H10A0.52450.8215−0.14640.058*
H10B0.46290.6493−0.14390.058*
C110.3475 (3)0.7982 (4)−0.09446 (14)0.0568 (8)
H11A0.31520.7211−0.06700.085*
H11B0.26100.8158−0.12810.085*
H11C0.37280.8940−0.07230.085*
C121.1937 (3)0.0850 (3)0.20663 (12)0.0465 (6)
H12A1.21100.12550.24860.056*
H12B1.29370.03720.19920.056*
C131.0661 (5)−0.0355 (4)0.2011 (2)0.0790 (11)
H13A0.96900.00910.21160.119*
H13B1.1007−0.12010.22880.119*
H13C1.0458−0.07370.15930.119*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0286 (2)0.0257 (2)0.0236 (2)0.00323 (15)0.00463 (15)0.00429 (15)
Cl10.0470 (4)0.0310 (3)0.0392 (3)−0.0058 (2)0.0091 (3)−0.0041 (2)
O10.0407 (9)0.0352 (9)0.0255 (7)0.0112 (7)0.0096 (7)0.0078 (6)
O20.0555 (11)0.0445 (10)0.0376 (9)0.0190 (8)0.0145 (8)0.0175 (8)
O30.1038 (17)0.0375 (10)0.0533 (12)−0.0086 (11)0.0357 (11)−0.0095 (9)
O40.0541 (12)0.0456 (11)0.0639 (13)−0.0157 (9)0.0075 (9)−0.0132 (9)
O50.1053 (17)0.0525 (12)0.0438 (11)−0.0208 (12)0.0300 (11)−0.0021 (9)
O60.0493 (13)0.0656 (14)0.116 (2)−0.0016 (11)−0.0058 (12)0.0108 (14)
N10.0264 (9)0.0250 (9)0.0292 (9)−0.0002 (7)0.0015 (7)0.0020 (7)
N20.0319 (10)0.0294 (10)0.0408 (11)0.0026 (8)0.0038 (8)−0.0007 (8)
C10.0301 (11)0.0345 (12)0.0277 (11)−0.0006 (9)0.0048 (9)−0.0003 (9)
C20.0290 (11)0.0310 (11)0.0244 (10)−0.0028 (9)0.0043 (9)0.0013 (9)
C30.0323 (12)0.0354 (12)0.0284 (11)−0.0017 (10)0.0030 (9)0.0047 (9)
C40.0413 (14)0.0464 (14)0.0271 (11)−0.0036 (11)0.0034 (10)0.0079 (10)
C50.0465 (15)0.0580 (16)0.0288 (12)0.0011 (13)0.0132 (11)0.0006 (11)
C60.0391 (13)0.0466 (14)0.0356 (13)0.0061 (11)0.0107 (10)−0.0031 (11)
C70.0292 (11)0.0299 (12)0.0333 (12)0.0024 (9)0.0048 (9)−0.0033 (9)
C80.0359 (12)0.0224 (11)0.0362 (12)−0.0029 (9)0.0033 (10)0.0010 (9)
C90.0374 (13)0.0232 (11)0.0387 (12)0.0043 (9)0.0042 (10)0.0019 (9)
C100.0474 (15)0.0519 (16)0.0429 (14)−0.0002 (13)−0.0052 (12)0.0011 (12)
C110.0354 (14)0.0620 (19)0.068 (2)−0.0005 (13)−0.0059 (13)0.0023 (15)
C120.0508 (16)0.0441 (15)0.0445 (14)0.0123 (12)0.0072 (12)0.0191 (12)
C130.078 (2)0.0510 (19)0.107 (3)−0.0058 (18)0.011 (2)0.010 (2)

Geometric parameters (Å, °)

Ni1—O1i1.836 (2)C4—H40.9300
Ni1—O11.836 (2)C5—C61.357 (4)
Ni1—N1i1.910 (2)C5—H50.9300
Ni1—N11.910 (2)C6—H60.9300
Cl1—O61.410 (2)C7—H70.9300
Cl1—O51.421 (2)C8—C91.512 (3)
Cl1—O41.4268 (18)C8—H8A0.9700
Cl1—O31.4384 (19)C8—H8B0.9700
O1—C21.309 (2)C9—H9A0.9700
O2—C31.365 (3)C9—H9B0.9700
O2—C121.439 (3)C10—C111.481 (4)
N1—C71.289 (3)C10—H10A0.9700
N1—C81.481 (3)C10—H10B0.9700
N2—C91.476 (3)C11—H11A0.9600
N2—C101.492 (3)C11—H11B0.9600
N2—H2A0.9000C11—H11C0.9600
N2—H2B0.9000C12—C131.478 (4)
C1—C21.399 (3)C12—H12A0.9700
C1—C61.405 (3)C12—H12B0.9700
C1—C71.421 (3)C13—H13A0.9600
C2—C31.421 (3)C13—H13B0.9600
C3—C41.370 (3)C13—H13C0.9600
C4—C51.390 (4)
O1i—Ni1—O1180.0C1—C6—H6119.7
O1i—Ni1—N1i92.33 (7)N1—C7—C1127.2 (2)
O1—Ni1—N1i87.67 (7)N1—C7—H7116.4
O1i—Ni1—N187.67 (7)C1—C7—H7116.4
O1—Ni1—N192.33 (7)N1—C8—C9113.63 (18)
N1i—Ni1—N1180.0N1—C8—H8A108.8
O6—Cl1—O5111.19 (15)C9—C8—H8A108.8
O6—Cl1—O4109.16 (13)N1—C8—H8B108.8
O5—Cl1—O4110.69 (13)C9—C8—H8B108.8
O6—Cl1—O3109.13 (15)H8A—C8—H8B107.7
O5—Cl1—O3108.15 (12)N2—C9—C8112.54 (18)
O4—Cl1—O3108.46 (13)N2—C9—H9A109.1
C2—O1—Ni1128.20 (14)C8—C9—H9A109.1
C3—O2—C12119.27 (19)N2—C9—H9B109.1
C7—N1—C8114.76 (18)C8—C9—H9B109.1
C7—N1—Ni1124.19 (15)H9A—C9—H9B107.8
C8—N1—Ni1120.95 (14)C11—C10—N2113.6 (2)
C9—N2—C10114.96 (19)C11—C10—H10A108.8
C9—N2—H2A108.5N2—C10—H10A108.8
C10—N2—H2A108.5C11—C10—H10B108.8
C9—N2—H2B108.5N2—C10—H10B108.8
C10—N2—H2B108.5H10A—C10—H10B107.7
H2A—N2—H2B107.5C10—C11—H11A109.5
C2—C1—C6119.9 (2)C10—C11—H11B109.5
C2—C1—C7119.90 (19)H11A—C11—H11B109.5
C6—C1—C7120.0 (2)C10—C11—H11C109.5
O1—C2—C1123.96 (19)H11A—C11—H11C109.5
O1—C2—C3117.8 (2)H11B—C11—H11C109.5
C1—C2—C3118.25 (19)O2—C12—C13113.0 (2)
O2—C3—C4126.0 (2)O2—C12—H12A109.0
O2—C3—C2113.84 (19)C13—C12—H12A109.0
C4—C3—C2120.2 (2)O2—C12—H12B109.0
C3—C4—C5120.7 (2)C13—C12—H12B109.0
C3—C4—H4119.7H12A—C12—H12B107.8
C5—C4—H4119.7C12—C13—H13A109.5
C6—C5—C4120.2 (2)C12—C13—H13B109.5
C6—C5—H5119.9H13A—C13—H13B109.5
C4—C5—H5119.9C12—C13—H13C109.5
C5—C6—C1120.7 (2)H13A—C13—H13C109.5
C5—C6—H6119.7H13B—C13—H13C109.5

Symmetry codes: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.902.343.013 (3)131
N2—H2B···O1i0.901.972.764 (2)146
N2—H2A···O30.902.563.242 (3)132
N2—H2A···O3ii0.902.132.916 (3)145

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2526).

References

  • Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. [PMC free article] [PubMed]
  • Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem.47, 4513–4519. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem.43, 8252–8262. [PubMed]
  • Carlsson, H., Haukka, M. & Nordlander, E. (2002). Inorg. Chem.41, 4981–4983. [PubMed]
  • Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem.46, 5967–5978. [PubMed]
  • Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.
  • Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem.47, 3095–3104. [PubMed]
  • Ma, H.-B., Jiang, Y.-X. & Lei, J.-T. (2008). Acta Cryst. E64, m597–m598. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skovsgaard, S., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m135–m137.
  • Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem.46, 6224–6226. [PubMed]
  • Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem.47, 3452–3459. [PubMed]
  • Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem.46, 11235–11242. [PubMed]
  • Zhao, X.-F. (2007). Acta Cryst. E63, m704–m705.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography