PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1092–m1093.
Published online 2008 July 31. doi:  10.1107/S1600536808023672
PMCID: PMC2961999

Dibromido{(E)-2-eth­oxy-6-[3-(methyl­ammonio)propyl­iminometh­yl]phenol­ato}zinc(II)

Abstract

The title complex, [ZnBr2(C13H20N2O2)], is a mononuclear zinc(II) compound derived from the zwitterionic form of the Schiff base (E)-2-eth­oxy-6-((3-(methyl­amino)propyl­imino)meth­yl)phenol. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the Schiff base ligand, and by two bromide ions, in a tetra­hedral coordination geometry. Adjacent mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains running along the b axis.

Related literature

For background to the chemistry of the Schiff base complexes, see: Ali et al. (2008 [triangle]); Biswas et al. (2008 [triangle]); Chen et al. (2008 [triangle]); Darensbourg & Frantz (2007 [triangle]); Habibi et al. (2007 [triangle]); Kawamoto et al. (2008 [triangle]); Lipscomb & Sträter (1996 [triangle]); Tomat et al. (2007 [triangle]); Wu et al. (2008 [triangle]); Yuan et al. (2007 [triangle]). For related structures, see: Qiu (2006 [triangle]); Wei et al. (2007 [triangle]); Zhu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1092-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C13H20N2O2)]
  • M r = 461.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1092-efi1.jpg
  • a = 17.884 (3) Å
  • b = 14.374 (2) Å
  • c = 14.992 (2) Å
  • β = 114.482 (3)°
  • V = 3507.4 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.96 mm−1
  • T = 298 (2) K
  • 0.23 × 0.21 × 0.21 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.341, T max = 0.367 (expected range = 0.265–0.286)
  • 14138 measured reflections
  • 3787 independent reflections
  • 1974 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.222
  • S = 1.00
  • 3787 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 1.12 e Å−3
  • Δρmin = −0.90 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023672/sj2525sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023672/sj2525Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases have been widely used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems, functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). In this paper, a new zinc(II) complex, (I), Fig. 1, with the Schiff base ligand 2-ethoxy-6-[(3-methylaminopropylimino)methyl]phenol has been synthesized and structurally characterized.

The ZnII atom in (I) is four-coordinated by the imine N and phenolate O atoms of the zwitterionic form of the Schiff base ligand and by two Br- ions in a tetrahedral coordination geometry. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in other similar zinc(II) Schiff base complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006).

In the crystal structure, adjacent molecules are linked through intermolecular N–H···O hydrogen bonds (Table 2), forming chains running along the b axis (Fig. 2).

Experimental

The Schiff base compound was prepared by the condensation of equimolar amounts of 3-ethoxysalicylaldehyde with N-methylpropane-1,3-diamine in a methanol solution. The complex was prepared by the following method. To an anhydrous methanol solution (5 ml) of ZnBr2 (22.5 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (23.6 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, colorless block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C). The structure contains a solvent accessible void of 58 Å3, which might accommodate a disordered methanol solvent molecule.

Figures

Fig. 1.
The molecular structure of (I) with ellipsoids drawn at the 30% probability level.
Fig. 2.
The crystal packing of (I), viewed along the c axis.

Crystal data

[ZnBr2(C13H20N2O2)]F000 = 1824
Mr = 461.50Dx = 1.748 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1842 reflections
a = 17.884 (3) Åθ = 2.4–24.1º
b = 14.374 (2) ŵ = 5.96 mm1
c = 14.992 (2) ÅT = 298 (2) K
β = 114.482 (3)ºBlock, colorless
V = 3507.4 (9) Å30.23 × 0.21 × 0.21 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer3787 independent reflections
Radiation source: fine-focus sealed tube1974 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.068
T = 298(2) Kθmax = 27.0º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −22→22
Tmin = 0.341, Tmax = 0.368k = −18→18
14138 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.222  w = 1/[σ2(Fo2) + (0.1251P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3787 reflectionsΔρmax = 1.12 e Å3
183 parametersΔρmin = −0.90 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.27393 (5)0.33839 (6)0.31911 (7)0.0412 (3)
Br10.41500 (7)0.37049 (9)0.38443 (10)0.0911 (5)
Br20.22492 (8)0.35250 (9)0.14417 (9)0.0842 (4)
O10.2106 (3)0.4129 (3)0.3728 (4)0.0457 (13)
O20.1034 (3)0.5348 (4)0.3750 (4)0.0524 (15)
N10.2463 (4)0.2150 (4)0.3615 (5)0.0435 (15)
N20.2234 (4)0.0849 (4)0.0895 (5)0.0506 (17)
H2A0.25080.13330.07930.061*
H2B0.25360.03350.09450.061*
C10.1272 (5)0.2825 (6)0.3792 (6)0.049 (2)
C20.1426 (4)0.3790 (5)0.3754 (5)0.0394 (17)
C30.0835 (5)0.4402 (6)0.3797 (5)0.047 (2)
C40.0121 (5)0.4091 (8)0.3825 (6)0.065 (3)
H4−0.02720.45170.38190.078*
C5−0.0022 (6)0.3135 (8)0.3860 (7)0.074 (3)
H5−0.05090.29300.38790.089*
C60.0554 (6)0.2503 (8)0.3869 (7)0.068 (3)
H60.04730.18700.39240.082*
C70.1826 (6)0.2104 (5)0.3813 (6)0.055 (2)
H70.17130.15200.39950.066*
C80.2915 (6)0.1308 (6)0.3638 (7)0.057 (2)
H8A0.26410.07830.37810.069*
H8B0.34620.13540.41620.069*
C90.2982 (5)0.1139 (6)0.2700 (6)0.055 (2)
H9A0.33200.05930.27670.067*
H9B0.32530.16650.25570.067*
C100.2170 (5)0.0998 (6)0.1873 (7)0.057 (2)
H10A0.18280.15360.18180.068*
H10B0.19060.04610.20090.068*
C110.1458 (5)0.0750 (7)0.0041 (7)0.065 (3)
H11A0.12110.01660.00730.097*
H11B0.15540.0771−0.05430.097*
H11C0.10970.12490.00290.097*
C120.0459 (6)0.6012 (7)0.3834 (7)0.065 (3)
H12A0.04130.59240.44500.079*
H12B−0.00790.59220.33040.079*
C130.0754 (6)0.6948 (8)0.3788 (8)0.084 (4)
H13A0.12950.70250.42990.127*
H13B0.03890.73950.38720.127*
H13C0.07710.70410.31630.127*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0429 (5)0.0361 (5)0.0501 (6)0.0014 (4)0.0248 (4)−0.0029 (4)
Br10.0580 (7)0.0846 (8)0.1261 (11)0.0068 (5)0.0335 (7)−0.0125 (7)
Br20.0864 (8)0.0953 (9)0.0692 (8)−0.0150 (6)0.0305 (6)0.0043 (6)
O10.042 (3)0.036 (3)0.071 (4)0.001 (2)0.034 (3)−0.006 (3)
O20.046 (3)0.061 (4)0.051 (4)0.019 (3)0.021 (3)−0.007 (3)
N10.049 (4)0.038 (4)0.042 (4)0.000 (3)0.017 (3)−0.001 (3)
N20.050 (4)0.035 (4)0.061 (5)0.005 (3)0.018 (4)0.006 (3)
C10.046 (5)0.064 (6)0.041 (5)−0.017 (4)0.022 (4)−0.006 (4)
C20.040 (4)0.046 (4)0.030 (4)0.000 (3)0.012 (3)−0.002 (3)
C30.044 (5)0.067 (6)0.032 (5)0.012 (4)0.017 (4)0.001 (4)
C40.039 (5)0.113 (9)0.050 (6)0.013 (5)0.026 (4)0.012 (5)
C50.057 (6)0.103 (9)0.069 (7)−0.030 (6)0.033 (5)−0.011 (6)
C60.066 (6)0.085 (7)0.066 (7)−0.013 (6)0.039 (6)−0.002 (6)
C70.084 (7)0.029 (4)0.053 (6)−0.005 (4)0.030 (5)−0.006 (4)
C80.078 (6)0.030 (4)0.057 (6)0.009 (4)0.021 (5)0.008 (4)
C90.051 (5)0.042 (5)0.061 (6)0.002 (4)0.012 (4)−0.019 (4)
C100.042 (5)0.043 (5)0.078 (7)−0.001 (4)0.018 (5)−0.014 (5)
C110.059 (6)0.065 (6)0.064 (6)−0.005 (5)0.019 (5)0.010 (5)
C120.070 (6)0.078 (7)0.055 (6)0.038 (5)0.032 (5)0.006 (5)
C130.084 (7)0.074 (7)0.071 (7)0.038 (6)0.007 (6)−0.024 (6)

Geometric parameters (Å, °)

Zn1—O11.958 (5)C5—H50.9300
Zn1—N12.014 (6)C6—H60.9300
Zn1—Br12.3429 (16)C7—H70.9300
Zn1—Br22.4046 (18)C8—C91.480 (12)
O1—C21.325 (8)C8—H8A0.9700
O2—C31.414 (11)C8—H8B0.9700
O2—C121.446 (9)C9—C101.481 (11)
N1—C71.293 (11)C9—H9A0.9700
N1—C81.447 (10)C9—H9B0.9700
N2—C111.453 (10)C10—H10A0.9700
N2—C101.532 (11)C10—H10B0.9700
N2—H2A0.9000C11—H11A0.9600
N2—H2B0.9000C11—H11B0.9600
C1—C61.414 (12)C11—H11C0.9600
C1—C21.420 (11)C12—C131.456 (15)
C1—C71.423 (12)C12—H12A0.9700
C2—C31.396 (11)C12—H12B0.9700
C3—C41.370 (12)C13—H13A0.9600
C4—C51.403 (15)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.369 (14)
O1—Zn1—N195.3 (2)C1—C7—H7115.5
O1—Zn1—Br1115.26 (16)N1—C8—C9112.2 (7)
N1—Zn1—Br1113.83 (19)N1—C8—H8A109.2
O1—Zn1—Br2113.02 (17)C9—C8—H8A109.2
N1—Zn1—Br2113.09 (19)N1—C8—H8B109.2
Br1—Zn1—Br2106.38 (6)C9—C8—H8B109.2
C2—O1—Zn1120.3 (4)H8A—C8—H8B107.9
C3—O2—C12115.4 (7)C8—C9—C10112.4 (8)
C7—N1—C8119.3 (7)C8—C9—H9A109.1
C7—N1—Zn1118.1 (5)C10—C9—H9A109.1
C8—N1—Zn1122.5 (6)C8—C9—H9B109.1
C11—N2—C10115.7 (7)C10—C9—H9B109.1
C11—N2—H2A108.4H9A—C9—H9B107.9
C10—N2—H2A108.4C9—C10—N2112.7 (7)
C11—N2—H2B108.4C9—C10—H10A109.1
C10—N2—H2B108.4N2—C10—H10A109.1
H2A—N2—H2B107.4C9—C10—H10B109.1
C6—C1—C2121.3 (8)N2—C10—H10B109.1
C6—C1—C7114.0 (8)H10A—C10—H10B107.8
C2—C1—C7124.6 (7)N2—C11—H11A109.5
O1—C2—C3119.4 (7)N2—C11—H11B109.5
O1—C2—C1123.7 (7)H11A—C11—H11B109.5
C3—C2—C1116.8 (7)N2—C11—H11C109.5
C4—C3—C2121.9 (9)H11A—C11—H11C109.5
C4—C3—O2124.8 (8)H11B—C11—H11C109.5
C2—C3—O2113.1 (7)O2—C12—C13108.8 (8)
C3—C4—C5120.5 (9)O2—C12—H12A109.9
C3—C4—H4119.8C13—C12—H12A109.9
C5—C4—H4119.8O2—C12—H12B109.9
C6—C5—C4120.1 (9)C13—C12—H12B109.9
C6—C5—H5119.9H12A—C12—H12B108.3
C4—C5—H5119.9C12—C13—H13A109.5
C5—C6—C1119.2 (9)C12—C13—H13B109.5
C5—C6—H6120.4H13A—C13—H13B109.5
C1—C6—H6120.4C12—C13—H13C109.5
N1—C7—C1129.0 (8)H13A—C13—H13C109.5
N1—C7—H7115.5H13B—C13—H13C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.901.842.697 (8)158
N2—H2B···O2i0.902.403.005 (8)124

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2525).

References

  • Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. [PMC free article] [PubMed]
  • Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem.47, 4513–4519. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem.46, 5967–5978. [PubMed]
  • Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.
  • Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem.47, 3095–3104. [PubMed]
  • Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev.96, 2375–2434. [PubMed]
  • Qiu, X.-Y. (2006). Acta Cryst. E62, m717–m718.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem.46, 6224–6226. [PubMed]
  • Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.
  • Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem.47, 3452–3459. [PubMed]
  • Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem.46, 11235–11242. [PubMed]
  • Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography