PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1088.
Published online 2008 July 31. doi:  10.1107/S1600536808023489
PMCID: PMC2961996

[N′-(1,3-Dioxoindan-2-yl­idene)-2-oxido­benzohydrazidato-κ3 O 2,N,O]tripyridine­nickel(II) pyridine solvate

Abstract

In the title compound, [Ni(C16H8N2O4)(C5H5N)3]·C5H5N, the NiII atom is six-coordinated by two O atoms and one N atom from the Schiff base ligand and by three N atoms from three pyridine mol­ecules, forming a distorted octa­hedral geometry. The Ni—O(phenolate) bond [1.9750 (16) Å] is shorter than the Ni—O(carbon­yl) bond [2.0840 (16) Å] and the Ni—N bonds (mean 2.120 Å).

Related literature

For related Schiff-base structures, see: Qiu, Fang et al. (2006 [triangle]); Qiu, Luo et al. (2006 [triangle]); Qiu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1088-scheme1.jpg

Experimental

Crystal data

  • [Ni(C16H8N2O4)(C5H5N)3]·C5H5N
  • M r = 667.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1088-efi1.jpg
  • a = 17.1945 (13) Å
  • b = 17.6887 (13) Å
  • c = 21.4633 (16) Å
  • V = 6528.0 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 273 (2) K
  • 0.19 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.885, T max = 0.908
  • 36292 measured reflections
  • 7115 independent reflections
  • 4248 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.093
  • S = 1.00
  • 7115 reflections
  • 424 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023489/is2292sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023489/is2292Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Natural Science Foundation of China (grant Nos. 20771048, 20431010, 20621091 and J0630962) for financial support.

supplementary crystallographic information

Comment

As part of an ongoing study on the structural characterization of Schiff-base compounds (Qiu, Fang et al., 2006; Qiu, Luo et al., 2006), the crystal structure of the title compound is reported here. In the molecule (Fig. 1), the NiII ion is six-coordinated by two oxygen atoms and one nitrogen atom from the schiff base ligand and three nitrogen atoms from three pyridine rings. One pyridine solvent molecule is not involved either in coordination to the NiII center or in classic hydrogen bonding to the compound. The Ni–O (phenolate) bond (1.975 Å) is the significantly shorter than other Ni–O (carbonyl) (2.084 Å) and Ni–N bonds (mean 2.120 Å), which suggests that the Ni–O (phenolate) bond is stronger than other bonds. From the crystal structure, the schiff base ligand and pyridine rings wrap around the NiII centre, forming an octahedral coordination (Qiu et al., 2007). A portion of the crystal packing of the compound is illustrated in Fig. 2.

Experimental

To a cold solution of 2-hydroxybenzhydrazide (3.04 g, 20 mmol) in absolute ethyl alcohol (25 ml) was added dropwise a solution of triketohydrindene hydrate (3.2 g, 20 mmol) in absolute ethyl alcohol (25 ml). Stirring was continued at room temperature for 10 min, then refluxing at 351 K for 2 h. After filtering, the filtrate was the schiff base (H2L) as yellow solid. To a solution of ligand (0.47 g, 1.6 mmol) in ethyl acetate (15 ml) was added slowly a solution of Ni(ac)2.2H2O (0.34 g, 1.6 mmol) in ethyl acetate (10 ml). The mixture was stirred for 2 h until a brown precipitate appeared. The precipitate was collected and washed three times with ethyl acetate. Further drying in vacuum afforded a brown powder. Brown single crystals of NiL.4(C5H5N) were grown from methanol and pyridine mixed solution (2:1 v/v) with slow evaporation at room temperature.

Refinement

All H were placed in geometrically idealized positions (C—H = 0.93 Å) and were treated as riding atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
A partial packing diagram of the title compound.

Crystal data

[Ni(C16H8N2O4)(C5H5N)3]·C5H5NF000 = 2768
Mr = 667.35Dx = 1.358 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4952 reflections
a = 17.1945 (13) Åθ = 2.2–21.5º
b = 17.6887 (13) ŵ = 0.64 mm1
c = 21.4633 (16) ÅT = 273 (2) K
V = 6528.0 (8) Å3Block, brown
Z = 80.19 × 0.18 × 0.15 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer7115 independent reflections
Radiation source: fine-focus sealed tube4248 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.058
T = 273(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −20→21
Tmin = 0.885, Tmax = 0.908k = −18→22
36292 measured reflectionsl = −24→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093  w = 1/[σ2(Fo2) + (0.031P)2 + 1.8991P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
7115 reflectionsΔρmax = 0.25 e Å3
424 parametersΔρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.836338 (16)0.083641 (16)0.657583 (13)0.04341 (10)
C10.76080 (12)0.18336 (13)0.48329 (11)0.0453 (6)
C20.75643 (14)0.26298 (14)0.47940 (12)0.0565 (7)
H20.76380.29300.51450.068*
C30.74079 (15)0.29530 (16)0.42153 (13)0.0643 (7)
H30.73830.34760.41740.077*
C40.72894 (15)0.24950 (17)0.37029 (13)0.0668 (8)
H40.71850.27190.33200.080*
C50.73212 (14)0.16902 (15)0.37408 (12)0.0595 (7)
H50.72350.13930.33900.071*
C60.74836 (13)0.13645 (14)0.43112 (11)0.0463 (6)
C70.75640 (13)0.05326 (14)0.44978 (11)0.0476 (6)
C80.77700 (13)0.05377 (13)0.51617 (10)0.0431 (5)
C90.77869 (12)0.13320 (13)0.53733 (11)0.0433 (6)
C100.80145 (16)−0.08939 (15)0.63042 (12)0.0568 (7)
C110.84936 (14)−0.11063 (14)0.68389 (11)0.0489 (6)
C120.85576 (15)−0.19104 (15)0.69505 (13)0.0615 (7)
H120.8306−0.22400.66800.074*
C130.89690 (16)−0.22044 (16)0.74336 (14)0.0693 (8)
H130.9009−0.27240.74930.083*
C140.93282 (16)−0.16944 (17)0.78369 (14)0.0692 (8)
H140.9608−0.18800.81750.083*
C150.92794 (14)−0.09100 (15)0.77480 (12)0.0590 (7)
H150.9527−0.05930.80310.071*
C160.88692 (13)−0.05805 (14)0.72444 (11)0.0470 (6)
C170.72290 (15)0.05699 (15)0.76300 (11)0.0568 (7)
H170.76820.05460.78660.068*
C180.65464 (16)0.04440 (16)0.79189 (12)0.0644 (7)
H180.65280.03360.83430.077*
C190.58917 (15)0.04784 (15)0.75774 (12)0.0616 (7)
H190.54090.03960.77610.074*
C200.59477 (14)0.06369 (16)0.69538 (13)0.0630 (7)
H200.55020.06600.67090.076*
C210.66456 (14)0.07584 (15)0.67011 (11)0.0579 (7)
H210.66750.08700.62780.069*
C220.84087 (14)0.25500 (15)0.69829 (12)0.0577 (7)
H220.81320.26170.66150.069*
C230.85674 (17)0.31949 (16)0.73437 (14)0.0702 (8)
H230.84030.36720.72170.084*
C240.89680 (17)0.31003 (18)0.78832 (15)0.0756 (9)
H240.90840.35110.81370.091*
C250.92010 (16)0.23715 (18)0.80478 (14)0.0720 (8)
H250.94780.22950.84140.086*
C260.90217 (15)0.17552 (16)0.76671 (12)0.0619 (7)
H260.91800.12750.77890.074*
C270.96595 (17)0.15987 (18)0.58237 (15)0.0824 (10)
H270.93690.20340.58930.099*
C281.0323 (2)0.1649 (2)0.54845 (18)0.1044 (12)
H281.04910.21090.53240.125*
C291.07387 (18)0.0991 (2)0.53864 (16)0.0895 (11)
H291.11970.10080.51570.107*
C301.04850 (16)0.0314 (2)0.56227 (13)0.0723 (9)
H301.0762−0.01300.55510.087*
C310.98246 (14)0.03074 (16)0.59608 (11)0.0572 (7)
H310.9652−0.01480.61280.069*
C320.4254 (3)0.1039 (2)0.5441 (2)0.1206 (14)
H320.38750.09970.57490.145*
C330.4032 (2)0.0948 (2)0.4840 (2)0.1056 (12)
H330.35120.08670.47390.127*
C340.4572 (3)0.0977 (2)0.43937 (19)0.1094 (13)
H340.44430.09090.39770.131*
C350.5290 (3)0.1106 (2)0.4563 (2)0.1157 (14)
H350.56820.11250.42650.139*
C360.5462 (2)0.1208 (3)0.5161 (2)0.1186 (14)
H360.59770.13080.52630.142*
N10.78470 (10)−0.01309 (11)0.54711 (9)0.0448 (5)
N20.80692 (10)−0.01229 (10)0.60518 (9)0.0441 (5)
N30.72906 (11)0.07276 (11)0.70230 (9)0.0464 (5)
N40.86311 (11)0.18326 (11)0.71342 (9)0.0496 (5)
N50.94071 (11)0.09374 (12)0.60636 (9)0.0538 (5)
N60.4958 (2)0.1180 (2)0.56149 (16)0.1264 (12)
O10.79103 (9)0.15745 (8)0.59117 (7)0.0493 (4)
O20.74742 (11)−0.00276 (10)0.41554 (8)0.0645 (5)
O30.75743 (14)−0.13547 (12)0.60754 (9)0.0958 (8)
O40.88726 (9)0.01748 (9)0.71947 (7)0.0523 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.03906 (16)0.04585 (18)0.04532 (18)−0.00026 (14)0.00063 (14)−0.00265 (15)
C10.0367 (13)0.0499 (16)0.0493 (14)0.0019 (11)0.0044 (10)0.0021 (12)
C20.0575 (16)0.0531 (17)0.0589 (17)0.0006 (13)0.0035 (13)−0.0007 (14)
C30.0672 (19)0.0513 (17)0.074 (2)0.0031 (14)−0.0003 (15)0.0094 (16)
C40.0692 (18)0.066 (2)0.0651 (18)0.0006 (15)−0.0071 (14)0.0201 (16)
C50.0590 (17)0.069 (2)0.0506 (16)−0.0045 (14)−0.0020 (12)0.0041 (14)
C60.0387 (13)0.0524 (15)0.0479 (15)0.0011 (11)0.0044 (11)0.0037 (12)
C70.0434 (14)0.0521 (15)0.0472 (14)0.0000 (12)0.0034 (11)−0.0017 (13)
C80.0399 (13)0.0467 (14)0.0425 (13)0.0003 (11)0.0029 (10)0.0018 (12)
C90.0339 (12)0.0486 (15)0.0473 (14)0.0019 (10)0.0059 (10)0.0001 (12)
C100.0708 (17)0.0490 (16)0.0506 (15)−0.0109 (14)−0.0028 (13)0.0008 (13)
C110.0497 (15)0.0473 (15)0.0496 (14)0.0008 (12)0.0025 (12)0.0044 (12)
C120.0693 (19)0.0509 (17)0.0644 (18)−0.0017 (14)0.0060 (14)0.0030 (14)
C130.071 (2)0.0537 (18)0.084 (2)0.0101 (15)0.0059 (17)0.0166 (16)
C140.0566 (18)0.075 (2)0.076 (2)0.0088 (15)−0.0065 (15)0.0199 (17)
C150.0512 (16)0.0662 (19)0.0596 (16)0.0008 (14)−0.0077 (12)0.0094 (14)
C160.0384 (13)0.0521 (17)0.0506 (15)0.0022 (11)0.0051 (11)0.0052 (12)
C170.0488 (15)0.0742 (18)0.0472 (15)−0.0015 (13)−0.0017 (12)−0.0037 (14)
C180.0584 (18)0.090 (2)0.0445 (15)−0.0034 (15)0.0081 (13)0.0028 (15)
C190.0471 (16)0.0785 (19)0.0590 (18)−0.0057 (14)0.0125 (13)0.0006 (15)
C200.0393 (15)0.090 (2)0.0598 (18)−0.0058 (14)−0.0023 (13)−0.0021 (15)
C210.0449 (14)0.084 (2)0.0444 (14)−0.0048 (14)0.0024 (12)0.0023 (13)
C220.0574 (16)0.0549 (17)0.0607 (16)0.0017 (14)0.0018 (13)−0.0073 (14)
C230.079 (2)0.0539 (18)0.077 (2)0.0009 (15)0.0049 (17)−0.0124 (16)
C240.077 (2)0.071 (2)0.078 (2)−0.0140 (17)0.0031 (17)−0.0286 (18)
C250.0667 (19)0.082 (2)0.0669 (19)−0.0056 (17)−0.0090 (15)−0.0162 (17)
C260.0552 (17)0.0651 (19)0.0653 (18)−0.0018 (13)−0.0048 (14)−0.0078 (15)
C270.068 (2)0.067 (2)0.111 (3)−0.0087 (16)0.0337 (19)−0.0041 (18)
C280.088 (3)0.089 (3)0.135 (3)−0.029 (2)0.051 (2)−0.010 (2)
C290.0535 (19)0.123 (3)0.092 (2)−0.020 (2)0.0220 (17)−0.035 (2)
C300.0428 (16)0.103 (3)0.071 (2)0.0046 (16)−0.0009 (14)−0.0283 (18)
C310.0444 (15)0.0712 (19)0.0559 (16)0.0044 (13)−0.0039 (12)−0.0083 (14)
C320.090 (3)0.160 (4)0.112 (4)0.017 (3)0.015 (3)−0.011 (3)
C330.074 (3)0.103 (3)0.140 (4)0.010 (2)−0.021 (3)−0.026 (3)
C340.114 (4)0.126 (3)0.088 (3)0.008 (3)−0.011 (3)−0.011 (2)
C350.096 (3)0.156 (4)0.095 (3)0.007 (3)0.012 (2)0.022 (3)
C360.071 (3)0.166 (4)0.118 (4)0.012 (3)−0.012 (3)0.030 (3)
N10.0429 (11)0.0495 (13)0.0420 (12)−0.0005 (9)0.0027 (9)−0.0022 (10)
N20.0408 (11)0.0471 (12)0.0444 (12)−0.0013 (9)0.0017 (9)0.0015 (9)
N30.0412 (11)0.0555 (13)0.0424 (11)−0.0022 (9)0.0005 (9)−0.0039 (10)
N40.0406 (11)0.0523 (14)0.0559 (13)−0.0005 (10)0.0010 (10)−0.0066 (10)
N50.0424 (12)0.0587 (14)0.0601 (13)−0.0036 (11)0.0046 (10)−0.0075 (11)
N60.094 (3)0.190 (4)0.096 (2)0.019 (3)−0.019 (2)0.000 (2)
O10.0529 (10)0.0490 (10)0.0462 (10)0.0026 (8)0.0000 (8)−0.0047 (8)
O20.0869 (13)0.0572 (11)0.0494 (10)0.0001 (10)−0.0032 (9)−0.0066 (9)
O30.145 (2)0.0689 (13)0.0739 (14)−0.0529 (14)−0.0469 (13)0.0201 (11)
O40.0517 (10)0.0515 (11)0.0537 (10)0.0002 (8)−0.0100 (8)0.0003 (8)

Geometric parameters (Å, °)

Ni1—O12.0840 (16)C18—H180.9300
Ni1—O41.9750 (16)C19—C201.371 (3)
Ni1—N22.0977 (19)C19—H190.9300
Ni1—N32.0882 (18)C20—C211.334 (3)
Ni1—N42.180 (2)C20—H200.9300
Ni1—N52.1122 (19)C21—N31.308 (3)
C1—C21.413 (3)C21—H210.9300
C1—C61.410 (3)C22—N41.365 (3)
C1—C91.492 (3)C22—C231.405 (3)
C2—C31.394 (3)C22—H220.9300
C2—H20.9300C23—C241.358 (4)
C3—C41.381 (4)C23—H230.9300
C3—H30.9300C24—C251.395 (4)
C4—C51.427 (4)C24—H240.9300
C4—H40.9300C25—C261.397 (4)
C5—C61.382 (3)C25—H250.9300
C5—H50.9300C26—N41.333 (3)
C6—C71.531 (3)C26—H260.9300
C7—O21.243 (3)C27—N51.350 (3)
C7—C81.468 (3)C27—C281.356 (4)
C8—N11.363 (3)C27—H270.9300
C8—C91.477 (3)C28—C291.382 (4)
C9—O11.251 (3)C28—H280.9300
C10—O31.216 (3)C29—C301.373 (4)
C10—C111.462 (3)C29—H290.9300
C10—N21.471 (3)C30—C311.348 (3)
C11—C161.428 (3)C30—H300.9300
C11—C121.447 (3)C31—N51.344 (3)
C12—C131.359 (4)C31—H310.9300
C12—H120.9300C32—N61.292 (5)
C13—C141.394 (4)C32—C331.357 (5)
C13—H130.9300C32—H320.9300
C14—C151.403 (4)C33—C341.335 (5)
C14—H140.9300C33—H330.9300
C15—C161.416 (3)C34—C351.307 (5)
C15—H150.9300C34—H340.9300
C16—O41.340 (3)C35—C361.329 (5)
C17—N31.337 (3)C35—H350.9300
C17—C181.346 (3)C36—N61.303 (5)
C17—H170.9300C36—H360.9300
C18—C191.345 (3)N1—N21.304 (2)
O4—Ni1—O1175.52 (7)C18—C19—H19120.6
O4—Ni1—N391.60 (7)C20—C19—H19120.6
O1—Ni1—N392.40 (7)C21—C20—C19119.5 (2)
O4—Ni1—N289.32 (7)C21—C20—H20120.2
O1—Ni1—N292.86 (7)C19—C20—H20120.2
N3—Ni1—N287.64 (7)N3—C21—C20122.8 (2)
O4—Ni1—N591.34 (7)N3—C21—H21118.6
O1—Ni1—N584.76 (7)C20—C21—H21118.6
N3—Ni1—N5175.99 (8)N4—C22—C23124.7 (3)
N2—Ni1—N589.67 (7)N4—C22—H22117.7
O4—Ni1—N490.90 (7)C23—C22—H22117.7
O1—Ni1—N487.05 (7)C24—C23—C22117.9 (3)
N3—Ni1—N490.48 (7)C24—C23—H23121.0
N2—Ni1—N4178.12 (7)C22—C23—H23121.0
N5—Ni1—N492.20 (7)C23—C24—C25118.4 (3)
C6—C1—C2122.1 (2)C23—C24—H24120.8
C6—C1—C9107.4 (2)C25—C24—H24120.8
C2—C1—C9130.5 (2)C24—C25—C26120.6 (3)
C3—C2—C1118.2 (3)C24—C25—H25119.7
C3—C2—H2120.9C26—C25—H25119.7
C1—C2—H2120.9N4—C26—C25122.2 (3)
C4—C3—C2119.8 (3)N4—C26—H26118.9
C4—C3—H3120.1C25—C26—H26118.9
C2—C3—H3120.1N5—C27—C28122.1 (3)
C3—C4—C5122.3 (3)N5—C27—H27118.9
C3—C4—H4118.9C28—C27—H27118.9
C5—C4—H4118.9C27—C28—C29117.5 (3)
C6—C5—C4118.3 (3)C27—C28—H28121.2
C6—C5—H5120.8C29—C28—H28121.2
C4—C5—H5120.8C30—C29—C28120.9 (3)
C5—C6—C1119.3 (2)C30—C29—H29119.5
C5—C6—C7130.6 (2)C28—C29—H29119.5
C1—C6—C7110.1 (2)C31—C30—C29118.3 (3)
O2—C7—C8127.5 (2)C31—C30—H30120.8
O2—C7—C6126.9 (2)C29—C30—H30120.8
C8—C7—C6105.6 (2)N5—C31—C30122.1 (3)
N1—C8—C7119.4 (2)N5—C31—H31118.9
N1—C8—C9132.4 (2)C30—C31—H31118.9
C7—C8—C9108.0 (2)N6—C32—C33124.1 (4)
O1—C9—C8127.9 (2)N6—C32—H32117.9
O1—C9—C1123.3 (2)C33—C32—H32117.9
C8—C9—C1108.82 (19)C34—C33—C32118.8 (4)
O3—C10—C11119.7 (2)C34—C33—H33120.6
O3—C10—N2120.8 (2)C32—C33—H33120.6
C11—C10—N2119.4 (2)C35—C34—C33117.7 (4)
C16—C11—C12120.3 (2)C35—C34—H34121.2
C16—C11—C10124.5 (2)C33—C34—H34121.2
C12—C11—C10115.2 (2)C34—C35—C36120.1 (4)
C13—C12—C11122.8 (3)C34—C35—H35119.9
C13—C12—H12118.6C36—C35—H35119.9
C11—C12—H12118.6N6—C36—C35124.7 (4)
C12—C13—C14117.2 (3)N6—C36—H36117.7
C12—C13—H13121.4C35—C36—H36117.7
C14—C13—H13121.4N2—N1—C8119.01 (19)
C13—C14—C15121.9 (3)N1—N2—C10108.86 (18)
C13—C14—H14119.0N1—N2—Ni1126.31 (15)
C15—C14—H14119.0C10—N2—Ni1124.62 (15)
C14—C15—C16122.7 (3)C21—N3—C17117.2 (2)
C14—C15—H15118.6C21—N3—Ni1120.16 (16)
C16—C15—H15118.6C17—N3—Ni1122.50 (16)
O4—C16—C15118.0 (2)C26—N4—C22116.2 (2)
O4—C16—C11127.1 (2)C26—N4—Ni1119.66 (18)
C15—C16—C11115.0 (2)C22—N4—Ni1124.17 (17)
N3—C17—C18123.6 (2)C31—N5—C27119.0 (2)
N3—C17—H17118.2C31—N5—Ni1117.98 (17)
C18—C17—H17118.2C27—N5—Ni1123.02 (18)
C19—C18—C17118.1 (2)C32—N6—C36114.5 (4)
C19—C18—H18120.9C9—O1—Ni1118.72 (15)
C17—C18—H18120.9C16—O4—Ni1129.97 (15)
C18—C19—C20118.9 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2292).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Qiu, X.-Y., Fang, X.-N., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2687–o2688.
  • Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2007). Z. Anorg. Allg. Chem.633, 1480–1484.
  • Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, o3531–o3532.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography