PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1087.
Published online 2008 July 31. doi:  10.1107/S1600536808021259
PMCID: PMC2961995

{1,8-Bis[2-(2-oxidobenzyl­idene­amino)phen­oxy]-3,6-dioxaocta­ne}nitrato­praseodymium(III) trichloro­methane solvate

Abstract

In the title compound, [Pr(C32H30N2O6)(NO3)]·CHCl3, the PrIII ion is ten-coordinated by eight O atoms and two N atoms from the acyclic crown-type Schiff base ligand and the bidentate nitrate group. The coordination polyhedron around PrIII is a distorted bicapped square anti­prism. The chloro­form solvent mol­ecule is not involved either in coordination to the PrIII center or in hydrogen bonding to the complex. The Pr—O(phenolate) bonds are significantly shorter than the Pr—O(ether) and Pr—O(nitrate) bonds, which suggests that the Pr—O(phenolate) bond is stronger than these other bonds. In the crystal structure, the acyclic crown-type Schiff base ligand wraps around the PrIII centre, forming a pseudo-ring.

Related literature

For general backgound, see: Wen et al. (2001 [triangle]); Liu et al. (2004 [triangle]). For related structures, see: Yu et al. (2006 [triangle]); Ding et al. (2007 [triangle]). For related literature, see: Si et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1087-scheme1.jpg

Experimental

Crystal data

  • [Pr(C32H30N2O6)(NO3)]·CHCl3
  • M r = 860.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1087-efi1.jpg
  • a = 11.3454 (14) Å
  • b = 20.150 (2) Å
  • c = 15.4676 (17) Å
  • β = 100.585 (2)°
  • V = 3475.9 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.69 mm−1
  • T = 298 (2) K
  • 0.48 × 0.43 × 0.21 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.498, T max = 0.718
  • 17233 measured reflections
  • 6118 independent reflections
  • 4284 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.083
  • S = 1.03
  • 6118 reflections
  • 442 parameters
  • H-atom parameters constrained
  • Δρmax = 1.44 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021259/wn2255sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021259/wn2255Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (grant Nos. 20771048, 20431010, 20621091 and J0630962) for financial support.

supplementary crystallographic information

Comment

Open chain polyethers offer many advantages over traditional crown ethers (Liu et al.,2004). They are excellent reagents for activating ion-selective electrodes and extracts of rare earth ions (Wen et al., 2001). In recent years the structures and properties of complexes with the zinc(II) ion, rare earth ions, and non-cyclic crown-type Schiff bases have been reported (Ding et al., 2007; Yu et al., 2006). To further understand the ability of these compounds to complex rare earth ions, we have prepared a non-cyclic crown-type Schiff base,1,8-bis[2-(2-hydroxyphenylideneimino)phenoxy]-3,6-dioxaoctane (H2L), as a ligand and investigated the reaction of H2L with Pr(NO3)3.6H2O. As part of a series of studies, we report here the crystal structure of the title compound. The structure of the complex is illustrated in Fig.1. Selected bond lengths and angles are given in Table 1. The PrIII ion is coordinated by ten donor atoms, eight of which belong to the non-cyclic crown-type Schiff base ligand and the remaining two to the bidentate nitrate group. The coordination polyhedron around PrIII is a distorted bicapped square antiprism (Fig. 2). The chloroform solvent molecule is not involved either in coordination to the PrIII center or in hydrogen bonding to the complex. The Pr—O (phenolate) bonds are stronger than the other Pr—O bonds. In the crystal structure, the non-cyclic crown-type Schiff base ligand wraps around the PrIII centre, forming a pseudo-ring.

Experimental

H2L was synthesized using a literature method (Si et al.,1994). The title compound Pr(NO3)(C32H30O6N2)(CHCl3) was synthesized as follows: NaOH (8.0 mg, 0.2 mmol) was added to 10 ml of ethyl acetate solution containing H2L (54.0 mg, 0.1 mmol). The mixture was stirred for 10 min at room temperature to obtain a yellow solution. 5 ml of ethyl acetate solution containing Pr(NO3)3.6H2O (43.4 mg, 0.1 mmol) was then added to the mixture and a yellow precipitate formed. The precipitate was collected and washed three times with ethyl acetate. Further drying in a vacuum afforded a yellow powder. Yellow single crystals of the title compound were grown from a mixed methanol/chloroform solution (v:v 1:2) by slow evaporation at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso(H)= 1.2Ueq(C). The highest residual electron density peak is located 1.32 Å from O6.

Figures

Fig. 1.
The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
The coordination polyhedron of the title compound, showing the distorted bicapped square antiprism.

Crystal data

[Pr(C32H30N2O6)(NO3)]·CHCl3F000 = 1728
Mr = 860.87Dx = 1.645 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 11.3454 (14) ÅCell parameters from 5219 reflections
b = 20.150 (2) Åθ = 2.3–25.5º
c = 15.4676 (17) ŵ = 1.69 mm1
β = 100.585 (2)ºT = 298 (2) K
V = 3475.9 (7) Å3Block, yellow
Z = 40.48 × 0.43 × 0.21 mm

Data collection

Bruker SMART 1000 CCD diffractometer6118 independent reflections
Radiation source: fine-focus sealed tube4284 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.498, Tmax = 0.718k = −23→20
17233 measured reflectionsl = −16→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.083  w = 1/[σ2(Fo2) + (0.0368P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6118 reflectionsΔρmax = 1.44 e Å3
442 parametersΔρmin = −0.55 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pr10.84007 (2)0.784583 (11)0.158214 (16)0.03001 (9)
Cl10.16296 (15)0.61952 (9)0.19132 (14)0.0999 (6)
Cl20.23419 (17)0.65708 (9)0.03000 (13)0.0984 (6)
Cl30.41044 (14)0.64221 (10)0.18791 (15)0.1164 (7)
N10.6762 (3)0.71096 (16)0.0580 (2)0.0339 (8)
N20.6852 (3)0.76463 (17)0.2664 (2)0.0348 (9)
N31.1034 (3)0.79143 (19)0.2513 (3)0.0436 (10)
C90.6446 (4)0.5878 (2)0.0482 (3)0.0503 (13)
H90.56460.59180.05340.060*
O10.9051 (2)0.69333 (14)0.04725 (19)0.0372 (7)
O20.9149 (3)0.82509 (15)0.01016 (19)0.0409 (8)
O30.9091 (3)0.91629 (14)0.1443 (2)0.0389 (7)
O40.8019 (2)0.87638 (13)0.2862 (2)0.0376 (7)
O50.6794 (2)0.84723 (13)0.09646 (19)0.0381 (7)
O60.8714 (2)0.68515 (14)0.2275 (2)0.0394 (7)
O71.0201 (3)0.80827 (17)0.2899 (2)0.0514 (9)
O81.0758 (3)0.78130 (15)0.1693 (2)0.0462 (8)
O91.2050 (3)0.7844 (2)0.2900 (3)0.0823 (13)
C10.9179 (4)0.7150 (2)−0.0398 (3)0.0458 (12)
H1A0.83940.7200−0.07670.055*
H1B0.96230.6821−0.06660.055*
C20.9823 (4)0.7793 (2)−0.0330 (3)0.0453 (12)
H2A1.06270.77410.00080.054*
H2B0.98820.7956−0.09110.054*
C30.9633 (5)0.8900 (2)0.0084 (3)0.0529 (14)
H3A0.95950.9042−0.05200.064*
H3B1.04670.89020.03750.064*
C40.8932 (5)0.9359 (2)0.0539 (3)0.0541 (14)
H4A0.92100.98110.04950.065*
H4B0.80900.93390.02700.065*
C50.8566 (4)0.9631 (2)0.1947 (3)0.0454 (12)
H5A0.77230.96900.17000.055*
H5B0.89641.00570.19500.055*
C60.8715 (4)0.9359 (2)0.2860 (3)0.0438 (12)
H6A0.95540.92630.30800.053*
H6B0.84540.96860.32450.053*
C70.8358 (4)0.6361 (2)0.0440 (3)0.0375 (11)
C80.7160 (4)0.6445 (2)0.0490 (3)0.0371 (11)
C100.6931 (5)0.5260 (2)0.0397 (4)0.0599 (15)
H100.64530.48840.03840.072*
C110.8117 (5)0.5196 (2)0.0331 (4)0.0609 (15)
H110.84380.47780.02700.073*
C120.8823 (5)0.5746 (2)0.0354 (3)0.0495 (13)
H120.96260.57010.03110.059*
C130.5709 (4)0.7263 (2)0.0152 (3)0.0386 (11)
H130.52750.6923−0.01640.046*
C140.5133 (4)0.7900 (2)0.0109 (3)0.0358 (10)
C150.5697 (4)0.8475 (2)0.0520 (3)0.0351 (10)
C160.5031 (4)0.9069 (2)0.0427 (3)0.0523 (13)
H160.53640.94500.07120.063*
C170.3912 (5)0.9097 (3)−0.0070 (4)0.0635 (16)
H170.35020.9499−0.01290.076*
C180.3374 (5)0.8544 (3)−0.0488 (4)0.0695 (17)
H180.26060.8568−0.08240.083*
C190.3990 (4)0.7954 (3)−0.0402 (3)0.0525 (14)
H190.36350.7580−0.06920.063*
C200.6820 (4)0.8820 (2)0.2903 (3)0.0364 (11)
C210.6188 (4)0.8227 (2)0.2810 (3)0.0376 (11)
C220.4985 (4)0.8233 (3)0.2833 (3)0.0486 (13)
H220.45540.78380.27580.058*
C230.4404 (4)0.8817 (3)0.2966 (4)0.0577 (15)
H230.35900.88170.29870.069*
C240.5048 (5)0.9396 (3)0.3066 (4)0.0576 (15)
H240.46650.97900.31630.069*
C250.6248 (5)0.9408 (2)0.3027 (3)0.0507 (13)
H250.66700.98060.30820.061*
C260.6611 (4)0.7105 (2)0.3046 (3)0.0372 (11)
H260.60150.71300.33850.045*
C270.7169 (4)0.6467 (2)0.3000 (3)0.0357 (11)
C280.8194 (4)0.6370 (2)0.2618 (3)0.0348 (11)
C290.8640 (4)0.5720 (2)0.2616 (3)0.0462 (12)
H290.93060.56410.23580.055*
C300.8129 (5)0.5196 (2)0.2980 (3)0.0554 (14)
H300.84470.47720.29630.066*
C310.7142 (5)0.5299 (3)0.3372 (3)0.0550 (14)
H310.68010.49470.36250.066*
C320.6671 (4)0.5927 (2)0.3383 (3)0.0487 (13)
H320.60090.59960.36490.058*
C330.2640 (4)0.6656 (3)0.1447 (4)0.0643 (16)
H330.25440.71250.15890.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pr10.02794 (14)0.03197 (14)0.02875 (14)−0.00197 (11)0.00155 (9)0.00156 (12)
Cl10.0752 (12)0.0960 (13)0.1290 (17)−0.0180 (10)0.0202 (11)0.0328 (12)
Cl20.1104 (14)0.0852 (12)0.1010 (15)−0.0041 (10)0.0232 (11)−0.0036 (11)
Cl30.0498 (10)0.1420 (17)0.150 (2)0.0073 (10)−0.0020 (11)−0.0466 (15)
N10.030 (2)0.033 (2)0.040 (2)−0.0011 (17)0.0089 (17)−0.0020 (18)
N20.033 (2)0.039 (2)0.031 (2)−0.0044 (17)0.0038 (16)0.0001 (17)
N30.026 (2)0.053 (3)0.048 (3)0.0021 (19)−0.0038 (19)0.002 (2)
C90.050 (3)0.048 (3)0.052 (3)−0.010 (3)0.009 (3)−0.010 (3)
O10.0364 (18)0.0414 (18)0.0343 (18)−0.0057 (14)0.0081 (14)0.0002 (14)
O20.050 (2)0.0399 (19)0.0327 (19)−0.0042 (15)0.0083 (15)0.0018 (15)
O30.0424 (19)0.0337 (17)0.041 (2)−0.0066 (14)0.0079 (15)0.0002 (15)
O40.0342 (18)0.0356 (18)0.044 (2)−0.0018 (14)0.0087 (14)0.0000 (15)
O50.0312 (17)0.0356 (17)0.0435 (19)0.0013 (14)−0.0037 (14)−0.0021 (15)
O60.0354 (18)0.0364 (17)0.047 (2)0.0035 (14)0.0083 (15)0.0129 (16)
O70.039 (2)0.069 (2)0.045 (2)0.0021 (17)0.0033 (16)−0.0087 (18)
O80.0381 (18)0.065 (2)0.0342 (19)0.0018 (16)0.0036 (15)−0.0025 (17)
O90.037 (2)0.128 (4)0.072 (3)0.006 (2)−0.015 (2)−0.009 (3)
C10.061 (3)0.052 (3)0.025 (3)0.000 (3)0.010 (2)−0.005 (2)
C20.060 (3)0.043 (3)0.036 (3)−0.006 (2)0.018 (2)0.004 (2)
C30.079 (4)0.042 (3)0.040 (3)−0.012 (3)0.017 (3)0.004 (2)
C40.087 (4)0.032 (3)0.046 (3)−0.006 (3)0.021 (3)0.009 (2)
C50.053 (3)0.028 (3)0.054 (3)−0.010 (2)0.007 (3)−0.007 (2)
C60.048 (3)0.038 (3)0.046 (3)−0.008 (2)0.009 (2)−0.007 (2)
C70.043 (3)0.036 (3)0.035 (3)−0.007 (2)0.010 (2)−0.002 (2)
C80.037 (3)0.035 (3)0.038 (3)−0.004 (2)0.002 (2)−0.008 (2)
C100.077 (4)0.039 (3)0.066 (4)−0.018 (3)0.020 (3)−0.010 (3)
C110.078 (4)0.031 (3)0.076 (4)0.005 (3)0.018 (3)−0.008 (3)
C120.055 (3)0.036 (3)0.058 (4)0.008 (2)0.015 (3)−0.008 (3)
C130.035 (3)0.041 (3)0.039 (3)−0.011 (2)0.005 (2)−0.007 (2)
C140.031 (2)0.043 (3)0.033 (3)−0.001 (2)0.005 (2)0.002 (2)
C150.032 (3)0.045 (3)0.030 (3)0.003 (2)0.008 (2)0.003 (2)
C160.055 (3)0.049 (3)0.051 (3)0.012 (3)0.004 (3)0.002 (3)
C170.049 (3)0.071 (4)0.065 (4)0.026 (3)−0.005 (3)−0.003 (3)
C180.034 (3)0.093 (5)0.074 (4)0.017 (3)−0.008 (3)0.004 (4)
C190.037 (3)0.066 (4)0.050 (3)−0.003 (3)−0.004 (2)−0.002 (3)
C200.039 (3)0.039 (3)0.031 (3)0.007 (2)0.007 (2)0.001 (2)
C210.038 (3)0.041 (3)0.033 (3)0.003 (2)0.006 (2)−0.002 (2)
C220.035 (3)0.054 (3)0.056 (3)−0.003 (2)0.007 (2)−0.002 (3)
C230.036 (3)0.072 (4)0.068 (4)0.007 (3)0.016 (3)0.004 (3)
C240.056 (4)0.056 (4)0.062 (4)0.019 (3)0.014 (3)−0.003 (3)
C250.055 (3)0.046 (3)0.052 (3)0.000 (3)0.011 (3)0.000 (3)
C260.029 (2)0.054 (3)0.030 (2)−0.010 (2)0.0087 (19)−0.009 (2)
C270.041 (3)0.033 (3)0.031 (3)−0.008 (2)0.002 (2)−0.001 (2)
C280.033 (3)0.036 (3)0.032 (3)−0.003 (2)−0.002 (2)0.005 (2)
C290.050 (3)0.046 (3)0.043 (3)0.006 (2)0.009 (2)0.005 (2)
C300.068 (4)0.042 (3)0.052 (4)0.000 (3)−0.001 (3)0.005 (3)
C310.073 (4)0.044 (3)0.045 (3)−0.020 (3)0.004 (3)0.008 (3)
C320.050 (3)0.051 (3)0.044 (3)−0.013 (3)0.007 (2)0.003 (3)
C330.046 (3)0.048 (3)0.100 (5)−0.001 (3)0.016 (3)−0.010 (3)

Geometric parameters (Å, °)

Pr1—O62.269 (3)C5—H5B0.9700
Pr1—O52.278 (3)C6—H6A0.9700
Pr1—N12.646 (3)C6—H6B0.9700
Pr1—O82.649 (3)C7—C121.363 (6)
Pr1—O72.649 (3)C7—C81.386 (6)
Pr1—N22.670 (4)C10—C111.374 (7)
Pr1—O12.708 (3)C10—H100.9300
Pr1—O22.710 (3)C11—C121.364 (6)
Pr1—O32.787 (3)C11—H110.9300
Pr1—O42.801 (3)C12—H120.9300
Cl1—C331.733 (5)C13—C141.436 (6)
Cl2—C331.752 (6)C13—H130.9300
Cl3—C331.738 (5)C14—C191.393 (6)
N1—C131.293 (5)C14—C151.415 (6)
N1—C81.429 (5)C15—C161.408 (6)
N2—C261.293 (5)C16—C171.360 (7)
N2—C211.432 (5)C16—H160.9300
N3—O91.206 (5)C17—C181.374 (7)
N3—O71.255 (4)C17—H170.9300
N3—O81.266 (5)C18—C191.372 (7)
C9—C101.378 (6)C18—H180.9300
C9—C81.399 (6)C19—H190.9300
C9—H90.9300C20—C251.379 (6)
O1—C71.391 (5)C20—C211.388 (6)
O1—C11.448 (5)C21—C221.372 (6)
O2—C31.421 (5)C22—C231.382 (6)
O2—C21.438 (5)C22—H220.9300
O3—C51.422 (5)C23—C241.371 (7)
O3—C41.432 (5)C23—H230.9300
O4—C201.378 (5)C24—C251.374 (6)
O4—C61.437 (5)C24—H240.9300
O5—C151.306 (5)C25—H250.9300
O6—C281.298 (5)C26—C271.440 (6)
C1—C21.482 (6)C26—H260.9300
C1—H1A0.9700C27—C321.407 (6)
C1—H1B0.9700C27—C281.411 (6)
C2—H2A0.9700C28—C291.405 (6)
C2—H2B0.9700C29—C301.373 (6)
C3—C41.480 (6)C29—H290.9300
C3—H3A0.9700C30—C311.383 (7)
C3—H3B0.9700C30—H300.9300
C4—H4A0.9700C31—C321.375 (7)
C4—H4B0.9700C31—H310.9300
C5—C61.495 (6)C32—H320.9300
C5—H5A0.9700C33—H330.9800
O6—Pr1—O5136.97 (10)C3—C4—H4B110.1
O6—Pr1—N179.26 (11)H4A—C4—H4B108.4
O5—Pr1—N169.09 (10)O3—C5—C6106.8 (4)
O6—Pr1—O883.05 (10)O3—C5—H5A110.4
O5—Pr1—O8139.60 (10)C6—C5—H5A110.4
N1—Pr1—O8128.04 (10)O3—C5—H5B110.4
O6—Pr1—O776.36 (11)C6—C5—H5B110.4
O5—Pr1—O7131.84 (10)H5A—C5—H5B108.6
N1—Pr1—O7155.61 (11)O4—C6—C5109.9 (4)
O8—Pr1—O747.81 (10)O4—C6—H6A109.7
O6—Pr1—N268.58 (10)C5—C6—H6A109.7
O5—Pr1—N277.19 (11)O4—C6—H6B109.7
N1—Pr1—N279.07 (10)C5—C6—H6B109.7
O8—Pr1—N2136.75 (10)H6A—C6—H6B108.2
O7—Pr1—N292.76 (10)C12—C7—C8121.2 (4)
O6—Pr1—O170.29 (10)C12—C7—O1122.1 (4)
O5—Pr1—O1113.61 (10)C8—C7—O1116.8 (4)
N1—Pr1—O159.47 (9)C7—C8—C9118.2 (4)
O8—Pr1—O168.58 (9)C7—C8—N1116.8 (4)
O7—Pr1—O1110.38 (9)C9—C8—N1125.0 (4)
N2—Pr1—O1125.60 (9)C11—C10—C9120.3 (5)
O6—Pr1—O2128.24 (10)C11—C10—H10119.8
O5—Pr1—O280.19 (10)C9—C10—H10119.8
N1—Pr1—O288.25 (10)C12—C11—C10120.1 (5)
O8—Pr1—O265.98 (9)C12—C11—H11119.9
O7—Pr1—O2106.17 (10)C10—C11—H11119.9
N2—Pr1—O2156.82 (10)C7—C12—C11120.3 (5)
O1—Pr1—O260.33 (8)C7—C12—H12119.9
O6—Pr1—O3148.83 (10)C11—C12—H12119.9
O5—Pr1—O369.79 (9)N1—C13—C14127.4 (4)
N1—Pr1—O3131.76 (10)N1—C13—H13116.3
O8—Pr1—O374.57 (9)C14—C13—H13116.3
O7—Pr1—O372.54 (10)C19—C14—C15119.2 (4)
N2—Pr1—O3114.75 (10)C19—C14—C13117.6 (4)
O1—Pr1—O3118.97 (8)C15—C14—C13123.1 (4)
O2—Pr1—O360.76 (9)O5—C15—C16119.9 (4)
O6—Pr1—O4106.28 (10)O5—C15—C14122.8 (4)
O5—Pr1—O473.42 (9)C16—C15—C14117.4 (4)
N1—Pr1—O4126.95 (9)C17—C16—C15121.4 (5)
O8—Pr1—O4104.85 (9)C17—C16—H16119.3
O7—Pr1—O462.29 (9)C15—C16—H16119.3
N2—Pr1—O456.72 (9)C16—C17—C18121.4 (5)
O1—Pr1—O4172.66 (8)C16—C17—H17119.3
O2—Pr1—O4120.76 (8)C18—C17—H17119.3
O3—Pr1—O460.53 (8)C19—C18—C17118.8 (5)
C13—N1—C8117.0 (4)C19—C18—H18120.6
C13—N1—Pr1130.5 (3)C17—C18—H18120.6
C8—N1—Pr1112.5 (2)C18—C19—C14121.8 (5)
C26—N2—C21117.1 (4)C18—C19—H19119.1
C26—N2—Pr1129.2 (3)C14—C19—H19119.1
C21—N2—Pr1113.7 (3)O4—C20—C25124.8 (4)
O9—N3—O7122.1 (4)O4—C20—C21114.8 (4)
O9—N3—O8121.1 (4)C25—C20—C21120.4 (4)
O7—N3—O8116.8 (4)C22—C21—C20119.1 (4)
C10—C9—C8119.9 (5)C22—C21—N2124.5 (4)
C10—C9—H9120.1C20—C21—N2116.3 (4)
C8—C9—H9120.1C21—C22—C23121.0 (5)
C7—O1—C1111.6 (3)C21—C22—H22119.5
C7—O1—Pr1111.6 (2)C23—C22—H22119.5
C1—O1—Pr1118.0 (2)C24—C23—C22118.9 (5)
C3—O2—C2109.9 (3)C24—C23—H23120.6
C3—O2—Pr1118.4 (3)C22—C23—H23120.6
C2—O2—Pr1118.3 (2)C23—C24—C25121.4 (5)
C5—O3—C4111.2 (3)C23—C24—H24119.3
C5—O3—Pr1115.9 (2)C25—C24—H24119.3
C4—O3—Pr1110.6 (2)C24—C25—C20119.1 (5)
C20—O4—C6118.6 (3)C24—C25—H25120.4
C20—O4—Pr1111.7 (2)C20—C25—H25120.4
C6—O4—Pr1113.2 (2)N2—C26—C27126.7 (4)
C15—O5—Pr1146.5 (3)N2—C26—H26116.6
C28—O6—Pr1144.1 (3)C27—C26—H26116.6
N3—O7—Pr197.3 (3)C32—C27—C28119.7 (4)
N3—O8—Pr197.0 (2)C32—C27—C26117.1 (4)
O1—C1—C2109.2 (4)C28—C27—C26123.2 (4)
O1—C1—H1A109.8O6—C28—C29120.4 (4)
C2—C1—H1A109.8O6—C28—C27122.6 (4)
O1—C1—H1B109.8C29—C28—C27117.1 (4)
C2—C1—H1B109.8C30—C29—C28122.4 (5)
H1A—C1—H1B108.3C30—C29—H29118.8
O2—C2—C1107.2 (4)C28—C29—H29118.8
O2—C2—H2A110.3C29—C30—C31120.1 (5)
C1—C2—H2A110.3C29—C30—H30120.0
O2—C2—H2B110.3C31—C30—H30120.0
C1—C2—H2B110.3C32—C31—C30119.4 (5)
H2A—C2—H2B108.5C32—C31—H31120.3
O2—C3—C4108.8 (4)C30—C31—H31120.3
O2—C3—H3A109.9C31—C32—C27121.3 (5)
C4—C3—H3A109.9C31—C32—H32119.4
O2—C3—H3B109.9C27—C32—H32119.4
C4—C3—H3B109.9Cl1—C33—Cl3110.7 (3)
H3A—C3—H3B108.3Cl1—C33—Cl2110.4 (3)
O3—C4—C3108.0 (4)Cl3—C33—Cl2110.9 (3)
O3—C4—H4A110.1Cl1—C33—H33108.2
C3—C4—H4A110.1Cl3—C33—H33108.2
O3—C4—H4B110.1Cl2—C33—H33108.2

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2255).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Winconsin, USA.
  • Ding, X.-S., Yu, T.-Z. & Liu, X. (2007). Hua Xue Tong Bao, 6, 463–466. [PubMed]
  • Liu, W.-S., Li, X.-F., Wen, Y.-H. & Tan, M.-Y. (2004). Dalton Trans. pp. 640–644. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Si, J.-M., Wu, Y.-J., Cai, L., Liu, Y.-Z. & Du, B.-S. (1994). J. Inclusion Phenom. Mol. Recognit. Chem.17, 249–258.
  • Wen, Y.-H., Qin, Z. & Liu, W.-S. (2001). J. Radioanal. Nucl. Chem.250, 285–289.
  • Westrip, S. P. (2008). publCIF. In preparation.
  • Yu, T.-Z., Su, W.-M., Li, W.-L. & Hong, Z.-R. (2006). Inorg. Chim. Acta, 359, 2246–2251.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography