PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1086.
Published online 2008 July 31. doi:  10.1107/S1600536808023647
PMCID: PMC2961994

A dinuclear copper complex: bis­(μ-4-amino­benzoato)bis­[aqua(1,10-phenanthroline)copper(II)] dichloride bis(4-amino­benzoic acid) dihydrate

Abstract

The title complex, [Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]·2C7H7NO2·2H2O, consists of a dinuclear [Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]2+ cation, two Cl anions, two 4-amino­benzoic acid mol­ecules and two disordered water mol­ecules (site occupancy factors 0.5). The Cu(II) ion adopts a distorted square-pyramidal geometry formed by two N atoms from the 1,10-phenanthroline ligand and two O atoms of the two 4-amino­benzoic acid ligands and one water O atom. The Cu(...)Cu separation is 3.109 (2) Å. A twofold axis passes through the mid-point of the Cu(...)Cu vector.

Related literature

For related literature, see: Lo et al. (2000 [triangle]); Zoroddu et al. (1996 [triangle]); Rao et al. (2004 [triangle]); Müller et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1086-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]·2C7H7NO2·2H2O
  • M r = 1174.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1086-efi2.jpg
  • a = 25.748 (2) Å
  • b = 10.0988 (8) Å
  • c = 20.9156 (17) Å
  • β = 110.3070 (10)°
  • V = 5100.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 291 (2) K
  • 0.49 × 0.40 × 0.37 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.638, T max = 0.708
  • 18514 measured reflections
  • 4744 independent reflections
  • 3886 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.091
  • S = 1.02
  • 4744 reflections
  • 352 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023647/pv2085sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023647/pv2085Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundition of Fujian Province of China (Grant no. Z0513017).

supplementary crystallographic information

Comment

During the last three decades, copper complexes have received much attention because of their interesting interactions with biological ligands to generate stable mixed coordinated complexes, which play a key role in life processes such as enzymatic catalysis, storage and conveyance of the matter, transfer of copper ions (Müller, et al., 2003; Rao, et al., 2004; Lo, et al., 2000). 4-Aminobenzoic acid, an important part of folic acid, is a constituent of the vitamin B complex and is found in animal and plant tissues, and has been shown to be a growth factor in certain microorganisms, particularly Enterococci and Lactobacilli (Zoroddu et al., 1996). In order to extend further the study of 4-aminobenzoic acid ligand coordinated to copper ion, we have synthesized the title complex, (I) and determined its crystal structure by X-ray diffraction which is presented in this article.

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively. The structure is composed of a dimeric [Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]2+ cation with two five-coordinated Cu(II) ions linked by two oxygen atoms of 4-aminobenzoic acid, two Cl- anions, two 4-aminobenzoic acid molecules and two disordered water molecules lying over four sites with 0.5 occupancy factors each. The Cu(II) ion has a distorted square-pyramidal geometry with two N atoms of 1,10-phenanthroline ligand and two O atoms of two 4-aminobenzoic acid ligands occupying basal sites and the apical position being occupied by an O atom of H2O. The benzoic acid molecules not coordinated to Cu are hydrogen bonded to Cl- ions by amino H-atoms and to water of coordination by hydroxyl H-atoms (details are given in Table 1). As a matter of fact, the complex molecules, Cl- anions, 4-aminobenzoic acid molecules and water molecules are linked by a network of O—H···O, N—H···O and O—H···Cl hydrogen bonds into a three-dimensional supramolecular structure. In the complex, the two 1,10-phenanthroline ligands are stacked with their centroids separated by 3.661 (2) Å indicating significant π-π interactions.

Experimental

An aqueous solution (5 ml) of CuCl2.3H2O (1 mmol) was added slowly to a mixed solution of 4-aminobenzoic acid (1.5 mmol) in H2O (5 ml) and 1,10-phenanthroline (1 mmol) in ethanol (95%, 5 ml). After refluxing for 3 h, the mixture was filtered off while hot. The dark-green single crystals suitable for X-ray analysis were obtained by slow evaporation of the above filtrate at room temperature after a week.

Refinement

The occupancy factors of water molecules not involved in coordination refined close to 0.5 values at the initial stages. Hence, site occupancy factors for both water molecules were fixed at 0.5. H-atoms bonded to water molecules were taken from a difference Fourier map and were fixed at those positions during the refinements with Uiso(H) = 1.5Ueq(O). H atoms bonded to C, N and hydroxyl O atoms were placed geometrically and treated as riding, with distances C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C and N) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The ORTEP-3 (Farrugia, 1997) drawing of the title compound. Displacement ellipsoids are drawn at 30% probability level. Symmetry code for letter "A" in the atomic symbols: -x, y, -z+1/2.
Fig. 2.
Projection of the unit cell showing the three-dimensional structure formed by H-bonding interaction of the compound (I).

Crystal data

[Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]·2C7H7NO2·2H2OF000 = 2416
Mr = 1174.96Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5516 reflections
a = 25.748 (2) Åθ = 2.3–24.7º
b = 10.0988 (8) ŵ = 1.01 mm1
c = 20.9156 (17) ÅT = 291 (2) K
β = 110.3070 (10)ºBlock, blue
V = 5100.5 (7) Å30.49 × 0.40 × 0.37 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4744 independent reflections
Radiation source: fine-focus sealed tube3886 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
T = 291(2) Kθmax = 25.5º
[var phi] & ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −31→31
Tmin = 0.638, Tmax = 0.708k = −12→12
18514 measured reflectionsl = −24→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.091  w = 1/[σ2(Fo2) + (0.0477P)2 + 4.1583P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4744 reflectionsΔρmax = 0.49 e Å3
352 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. Yield 81%. IR(KBr): 3409(s), 3190(w), 3057(w), 2921(m), 2857(w), 1734(w), 1671(s), 1630(s), 1600(versus), 1550(s), 1516(s), 1494(w), 1418(m), 1389(versus), 1344(w), 1312(m), 1267(s), 1222(vw), 1178(s), 1146(m), 1108(m), 1046(w), 854(s), 844(s), 786(m), 719(s), 702(w), 643(m), 609(m), 511(m), 466(w), 430(w).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.018177 (11)−0.03851 (3)0.186473 (14)0.03323 (10)
Cl10.18713 (3)−0.11806 (7)0.16975 (4)0.0568 (2)
O10.2421 (2)0.7015 (7)0.0622 (3)0.117 (2)0.50
H2W0.22550.74810.08280.176*0.50
H1W0.26510.74970.04920.176*0.50
O20.29142 (16)0.4893 (4)0.10037 (19)0.0606 (10)0.50
H4W0.29050.56580.08650.091*0.50
H3W0.27220.48210.12460.091*0.50
O40.06914 (7)−0.15420 (17)0.25246 (9)0.0441 (4)
O30.05793 (6)−0.10211 (15)0.10938 (8)0.0389 (4)
H5W0.0910−0.12330.12810.058*
H6W0.0554−0.03840.08300.058*
O50.04104 (7)−0.16729 (16)0.34272 (8)0.0416 (4)
O60.05048 (8)0.10828 (17)0.02418 (10)0.0561 (5)
O70.00758 (7)0.29085 (17)−0.02501 (9)0.0500 (4)
N1−0.03250 (8)0.10025 (19)0.12729 (10)0.0363 (4)
N20.06502 (8)0.12213 (19)0.22432 (10)0.0367 (4)
N30.26796 (11)−0.4815 (3)0.45449 (15)0.0914 (11)
H3A0.2899−0.50520.43360.110*
H3B0.2751−0.50370.49640.110*
N40.22137 (10)0.5522 (2)0.18975 (12)0.0609 (7)
H4A0.25110.51600.21690.073*
H4B0.21880.63700.18670.073*
C10.07507 (9)−0.1908 (2)0.31242 (12)0.0338 (5)
C20.12577 (9)−0.2661 (2)0.35019 (11)0.0323 (5)
C30.13794 (10)−0.2994 (3)0.41806 (12)0.0441 (6)
H3D0.1137−0.27440.44000.053*
C40.18489 (11)−0.3682 (3)0.45348 (13)0.0539 (7)
H40.1925−0.38830.49920.065*
C50.22162 (11)−0.4085 (3)0.42110 (14)0.0515 (7)
C60.21002 (10)−0.3726 (2)0.35347 (13)0.0411 (6)
H60.2343−0.39670.33140.049*
C70.16336 (10)−0.3024 (2)0.31893 (12)0.0363 (5)
H7A0.1566−0.27850.27380.044*
C8−0.08038 (11)0.0855 (3)0.07639 (13)0.0480 (6)
H8−0.09350.00030.06320.058*
C9−0.11160 (12)0.1930 (3)0.04215 (14)0.0582 (8)
H9−0.14470.17920.00620.070*
C10−0.09364 (12)0.3183 (3)0.06132 (14)0.0556 (7)
H10−0.11500.39030.03960.067*
C11−0.04277 (11)0.3387 (2)0.11407 (13)0.0438 (6)
C12−0.01910 (14)0.4660 (3)0.13788 (16)0.0540 (7)
H12−0.03830.54220.11830.065*
C130.03050 (14)0.4771 (3)0.18812 (16)0.0553 (8)
H130.04480.56080.20250.066*
C140.06162 (11)0.3625 (2)0.21979 (13)0.0438 (6)
C150.11401 (13)0.3645 (3)0.27098 (15)0.0593 (8)
H150.13080.44500.28760.071*
C160.14047 (12)0.2497 (3)0.29647 (15)0.0612 (8)
H160.17540.25160.33000.073*
C170.11497 (11)0.1290 (3)0.27211 (14)0.0497 (7)
H170.13350.05080.28980.060*
C180.03912 (10)0.2371 (2)0.19804 (12)0.0358 (5)
C19−0.01349 (10)0.2252 (2)0.14510 (11)0.0349 (5)
C200.04919 (10)0.2283 (2)0.02199 (12)0.0386 (6)
C210.09205 (10)0.3146 (2)0.06716 (12)0.0364 (5)
C220.08804 (10)0.4523 (2)0.06392 (12)0.0393 (5)
H220.05650.49160.03350.047*
C230.13002 (11)0.5308 (2)0.10500 (13)0.0440 (6)
H230.12650.62240.10200.053*
C240.17799 (10)0.4743 (3)0.15117 (12)0.0422 (6)
C250.18133 (11)0.3366 (3)0.15532 (13)0.0486 (6)
H250.21250.29710.18650.058*
C260.13959 (11)0.2583 (3)0.11425 (12)0.0436 (6)
H260.14290.16660.11770.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02996 (16)0.03028 (16)0.03771 (17)−0.00293 (11)0.00953 (12)0.00503 (12)
Cl10.0428 (4)0.0556 (4)0.0662 (5)−0.0092 (3)0.0117 (3)0.0103 (3)
O10.077 (4)0.185 (6)0.079 (4)−0.016 (4)0.014 (3)0.018 (4)
O20.063 (3)0.070 (3)0.045 (2)−0.003 (2)0.0136 (19)−0.0081 (19)
O40.0407 (9)0.0462 (10)0.0469 (10)0.0072 (8)0.0169 (8)0.0165 (8)
O30.0351 (9)0.0391 (9)0.0410 (9)0.0007 (7)0.0113 (7)0.0082 (7)
O50.0380 (9)0.0419 (9)0.0465 (10)0.0118 (7)0.0166 (8)0.0016 (8)
O60.0755 (14)0.0345 (10)0.0529 (11)−0.0070 (9)0.0154 (10)0.0066 (8)
O70.0495 (10)0.0397 (10)0.0520 (11)0.0027 (8)0.0062 (9)0.0031 (8)
N10.0353 (10)0.0365 (11)0.0361 (11)−0.0009 (9)0.0111 (9)0.0023 (9)
N20.0331 (10)0.0374 (11)0.0373 (11)−0.0048 (9)0.0095 (9)0.0034 (9)
N30.0673 (18)0.142 (3)0.0690 (18)0.0646 (19)0.0284 (15)0.0421 (19)
N40.0495 (14)0.0600 (16)0.0599 (15)−0.0008 (12)0.0019 (12)−0.0113 (12)
C10.0342 (12)0.0238 (11)0.0429 (13)−0.0006 (9)0.0128 (11)0.0010 (10)
C20.0327 (12)0.0260 (11)0.0388 (12)0.0016 (9)0.0134 (10)0.0024 (9)
C30.0414 (14)0.0528 (16)0.0435 (14)0.0109 (12)0.0217 (12)0.0064 (12)
C40.0495 (16)0.076 (2)0.0372 (14)0.0200 (14)0.0157 (12)0.0175 (13)
C50.0407 (14)0.0609 (17)0.0525 (16)0.0171 (13)0.0158 (12)0.0143 (14)
C60.0351 (13)0.0425 (14)0.0504 (15)0.0054 (11)0.0209 (11)0.0032 (11)
C70.0394 (13)0.0324 (12)0.0401 (13)0.0003 (10)0.0178 (11)0.0041 (10)
C80.0414 (14)0.0509 (16)0.0456 (15)−0.0030 (12)0.0074 (12)0.0005 (12)
C90.0472 (16)0.068 (2)0.0487 (16)0.0102 (15)0.0031 (13)0.0110 (15)
C100.0576 (17)0.0569 (18)0.0518 (16)0.0170 (14)0.0181 (14)0.0209 (14)
C110.0547 (16)0.0399 (14)0.0438 (14)0.0092 (12)0.0261 (13)0.0113 (11)
C120.074 (2)0.0357 (14)0.0630 (18)0.0076 (14)0.0373 (17)0.0108 (13)
C130.082 (2)0.0323 (14)0.068 (2)−0.0069 (14)0.0465 (19)−0.0047 (13)
C140.0550 (16)0.0373 (13)0.0464 (14)−0.0112 (12)0.0267 (13)−0.0077 (11)
C150.068 (2)0.0518 (17)0.0625 (18)−0.0276 (16)0.0289 (16)−0.0162 (15)
C160.0493 (17)0.070 (2)0.0561 (18)−0.0207 (15)0.0077 (14)−0.0072 (16)
C170.0398 (14)0.0534 (16)0.0495 (15)−0.0067 (12)0.0072 (12)0.0056 (13)
C180.0419 (13)0.0352 (12)0.0362 (12)−0.0046 (10)0.0210 (11)0.0007 (10)
C190.0412 (13)0.0344 (12)0.0332 (12)−0.0002 (10)0.0181 (10)0.0034 (10)
C200.0483 (15)0.0356 (14)0.0384 (13)−0.0007 (11)0.0234 (12)0.0034 (10)
C210.0414 (13)0.0370 (13)0.0343 (12)0.0019 (11)0.0176 (10)0.0034 (10)
C220.0395 (13)0.0389 (13)0.0376 (13)0.0043 (11)0.0111 (11)0.0055 (11)
C230.0498 (15)0.0359 (14)0.0452 (14)0.0039 (12)0.0153 (12)0.0022 (11)
C240.0419 (14)0.0496 (16)0.0362 (13)−0.0001 (12)0.0148 (11)−0.0044 (11)
C250.0442 (15)0.0526 (16)0.0441 (15)0.0140 (13)0.0089 (12)0.0028 (12)
C260.0507 (15)0.0367 (13)0.0443 (14)0.0103 (12)0.0176 (12)0.0045 (11)

Geometric parameters (Å, °)

Cu1—O41.9326 (16)C6—C71.366 (3)
Cu1—O5i1.9346 (16)C6—H60.9300
Cu1—N22.0125 (19)C7—H7A0.9300
Cu1—N12.0192 (19)C8—C91.393 (4)
Cu1—O32.2815 (16)C8—H80.9300
O1—H2W0.8467C9—C101.358 (4)
O1—H1W0.8810C9—H90.9300
O2—H4W0.8235C10—C111.404 (4)
O2—H3W0.8250C10—H100.9300
O4—C11.265 (3)C11—C191.401 (3)
O3—H5W0.8317C11—C121.436 (4)
O3—H6W0.8354C12—C131.348 (4)
O5—C11.269 (3)C12—H120.9300
O5—Cu1i1.9346 (16)C13—C141.432 (4)
O6—C201.213 (3)C13—H130.9300
O7—C201.335 (3)C14—C181.401 (3)
N1—C81.328 (3)C14—C151.401 (4)
N1—C191.358 (3)C15—C161.356 (4)
N2—C171.329 (3)C15—H150.9300
N2—C181.357 (3)C16—C171.395 (4)
N3—C51.370 (3)C16—H160.9300
N3—H3A0.8600C17—H170.9300
N3—H3B0.8600C18—C191.426 (3)
N4—C241.375 (3)C20—C211.465 (3)
N4—H4A0.8600C21—C221.394 (3)
N4—H4B0.8600C21—C261.398 (3)
C1—C21.480 (3)C22—C231.375 (3)
C2—C31.385 (3)C22—H220.9300
C2—C71.392 (3)C23—C241.399 (3)
C3—C41.368 (3)C23—H230.9300
C3—H3D0.9300C24—C251.394 (4)
C4—C51.401 (4)C25—C261.370 (4)
C4—H40.9300C25—H250.9300
C5—C61.389 (4)C26—H260.9300
O4—Cu1—O5i94.84 (7)C10—C9—H9120.1
O4—Cu1—N292.34 (8)C8—C9—H9120.1
O5i—Cu1—N2164.82 (8)C9—C10—C11119.8 (3)
O4—Cu1—N1172.52 (8)C9—C10—H10120.1
O5i—Cu1—N190.13 (7)C11—C10—H10120.1
N2—Cu1—N181.56 (8)C19—C11—C10116.7 (2)
O4—Cu1—O388.54 (6)C19—C11—C12118.4 (2)
O5i—Cu1—O394.90 (6)C10—C11—C12124.9 (3)
N2—Cu1—O398.65 (7)C13—C12—C11121.2 (3)
N1—Cu1—O396.61 (7)C13—C12—H12119.4
H2W—O1—H1W111.3C11—C12—H12119.4
H4W—O2—H3W110.4C12—C13—C14121.3 (3)
C1—O4—Cu1134.68 (15)C12—C13—H13119.3
Cu1—O3—H5W112.1C14—C13—H13119.3
Cu1—O3—H6W107.4C18—C14—C15116.2 (3)
H5W—O3—H6W110.0C18—C14—C13118.5 (2)
C1—O5—Cu1i124.96 (15)C15—C14—C13125.3 (3)
C8—N1—C19118.0 (2)C16—C15—C14120.5 (3)
C8—N1—Cu1129.48 (18)C16—C15—H15119.8
C19—N1—Cu1112.46 (15)C14—C15—H15119.8
C17—N2—C18118.1 (2)C15—C16—C17119.7 (3)
C17—N2—Cu1128.99 (18)C15—C16—H16120.2
C18—N2—Cu1112.80 (15)C17—C16—H16120.2
C5—N3—H3A120.0N2—C17—C16122.0 (3)
C5—N3—H3B120.0N2—C17—H17119.0
H3A—N3—H3B120.0C16—C17—H17119.0
C24—N4—H4A120.0N2—C18—C14123.5 (2)
C24—N4—H4B120.0N2—C18—C19116.3 (2)
H4A—N4—H4B120.0C14—C18—C19120.2 (2)
O4—C1—O5125.0 (2)N1—C19—C11123.2 (2)
O4—C1—C2117.4 (2)N1—C19—C18116.5 (2)
O5—C1—C2117.6 (2)C11—C19—C18120.3 (2)
C3—C2—C7118.1 (2)O6—C20—O7120.3 (2)
C3—C2—C1121.0 (2)O6—C20—C21124.4 (2)
C7—C2—C1120.9 (2)O7—C20—C21115.2 (2)
C4—C3—C2121.4 (2)C22—C21—C26118.2 (2)
C4—C3—H3D119.3C22—C21—C20122.4 (2)
C2—C3—H3D119.3C26—C21—C20119.4 (2)
C3—C4—C5120.2 (2)C23—C22—C21121.1 (2)
C3—C4—H4119.9C23—C22—H22119.5
C5—C4—H4119.9C21—C22—H22119.5
N3—C5—C6120.1 (2)C22—C23—C24120.7 (2)
N3—C5—C4121.6 (3)C22—C23—H23119.6
C6—C5—C4118.3 (2)C24—C23—H23119.6
C7—C6—C5120.9 (2)N4—C24—C25120.9 (2)
C7—C6—H6119.6N4—C24—C23121.0 (2)
C5—C6—H6119.6C25—C24—C23118.1 (2)
C6—C7—C2121.0 (2)C26—C25—C24121.2 (2)
C6—C7—H7A119.5C26—C25—H25119.4
C2—C7—H7A119.5C24—C25—H25119.4
N1—C8—C9122.3 (3)C25—C26—C21120.7 (2)
N1—C8—H8118.9C25—C26—H26119.6
C9—C8—H8118.9C21—C26—H26119.6
C10—C9—C8119.9 (3)
O5i—Cu1—O4—C1−79.3 (2)C11—C12—C13—C140.0 (4)
N2—Cu1—O4—C187.3 (2)C12—C13—C14—C18−0.8 (4)
O3—Cu1—O4—C1−174.1 (2)C12—C13—C14—C15178.2 (3)
O5i—Cu1—N1—C8−16.4 (2)C18—C14—C15—C160.5 (4)
N2—Cu1—N1—C8176.4 (2)C13—C14—C15—C16−178.5 (3)
O3—Cu1—N1—C878.6 (2)C14—C15—C16—C17−0.8 (5)
O5i—Cu1—N1—C19162.21 (16)C18—N2—C17—C161.4 (4)
N2—Cu1—N1—C19−5.03 (15)Cu1—N2—C17—C16−175.2 (2)
O3—Cu1—N1—C19−102.84 (15)C15—C16—C17—N2−0.2 (5)
O4—Cu1—N2—C176.6 (2)C17—N2—C18—C14−1.7 (3)
O5i—Cu1—N2—C17124.8 (3)Cu1—N2—C18—C14175.41 (18)
N1—Cu1—N2—C17−177.8 (2)C17—N2—C18—C19177.7 (2)
O3—Cu1—N2—C17−82.3 (2)Cu1—N2—C18—C19−5.2 (2)
O4—Cu1—N2—C18−170.09 (16)C15—C14—C18—N20.7 (4)
O5i—Cu1—N2—C18−51.9 (4)C13—C14—C18—N2179.8 (2)
N1—Cu1—N2—C185.57 (15)C15—C14—C18—C19−178.6 (2)
O3—Cu1—N2—C18101.03 (15)C13—C14—C18—C190.5 (3)
Cu1—O4—C1—O59.1 (4)C8—N1—C19—C112.3 (3)
Cu1—O4—C1—C2−170.59 (15)Cu1—N1—C19—C11−176.46 (18)
Cu1i—O5—C1—O4−14.8 (3)C8—N1—C19—C18−177.5 (2)
Cu1i—O5—C1—C2164.80 (15)Cu1—N1—C19—C183.7 (2)
O4—C1—C2—C3174.1 (2)C10—C11—C19—N1−1.2 (4)
O5—C1—C2—C3−5.6 (3)C12—C11—C19—N1178.9 (2)
O4—C1—C2—C7−4.2 (3)C10—C11—C19—C18178.6 (2)
O5—C1—C2—C7176.1 (2)C12—C11—C19—C18−1.3 (3)
C7—C2—C3—C4−1.3 (4)N2—C18—C19—N11.0 (3)
C1—C2—C3—C4−179.6 (2)C14—C18—C19—N1−179.6 (2)
C2—C3—C4—C5−1.0 (4)N2—C18—C19—C11−178.8 (2)
C3—C4—C5—N3−177.7 (3)C14—C18—C19—C110.6 (3)
C3—C4—C5—C62.3 (4)O6—C20—C21—C22−178.2 (2)
N3—C5—C6—C7178.5 (3)O7—C20—C21—C223.6 (3)
C4—C5—C6—C7−1.5 (4)O6—C20—C21—C263.5 (4)
C5—C6—C7—C2−0.7 (4)O7—C20—C21—C26−174.7 (2)
C3—C2—C7—C62.1 (4)C26—C21—C22—C231.1 (4)
C1—C2—C7—C6−179.6 (2)C20—C21—C22—C23−177.2 (2)
C19—N1—C8—C9−1.2 (4)C21—C22—C23—C240.1 (4)
Cu1—N1—C8—C9177.4 (2)C22—C23—C24—N4176.5 (2)
N1—C8—C9—C10−1.0 (4)C22—C23—C24—C25−1.4 (4)
C8—C9—C10—C112.1 (4)N4—C24—C25—C26−176.2 (2)
C9—C10—C11—C19−1.1 (4)C23—C24—C25—C261.7 (4)
C9—C10—C11—C12178.8 (3)C24—C25—C26—C21−0.5 (4)
C19—C11—C12—C131.0 (4)C22—C21—C26—C25−0.9 (4)
C10—C11—C12—C13−178.8 (3)C20—C21—C26—C25177.5 (2)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H2W···Cl1ii0.852.713.549 (7)170
O1—H1W···O1iii0.882.322.938 (11)127
O2—H4W···O10.821.802.477 (8)138
O2—H3W···N40.832.303.081 (5)157
O3—H5W···Cl10.832.323.1259 (17)163
O3—H6W···O60.841.902.737 (2)179
N3—H3A···Cl1iv0.862.683.475 (3)154
N3—H3B···O2v0.862.072.898 (5)161
N4—H4A···Cl1vi0.862.713.512 (3)155
N4—H4B···Cl1ii0.862.593.433 (3)167

Symmetry codes: (ii) x, y+1, z; (iii) −x+1/2, −y+3/2, −z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x, −y, z+1/2; (vi) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2085).

References

  • Bruker (2001). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Lo, S. M. F., Chui, S. S. Y. & Shek, L. Y. (2000). J. Am. Chem. Soc.122, 6293–6294.
  • Müller, A., Das, S. K. & Talismanov, S. (2003). Angew. Chem. Int. Ed.42, 5039–5044. [PubMed]
  • Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed.43, 1466–1496. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zoroddu, M. A., Dallocchio, R. & Mosca, S. (1996). Polyhedron, 15, 277–283.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography