PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1083.
Published online 2008 July 31. doi:  10.1107/S1600536808023404
PMCID: PMC2961991

Bis(triphenyl­guanidinium) tetra­chlorido­cuprate(II)

Abstract

The structure of the title compound, (C19H18N3)2[CuCl4], consists of square-planar [CuCl4]2− anions and triphenyl­guanidinium cations. The CuII ion occupies a crystallographic inversion centre. In the cation, the dihedral angles between the phenyl rings and the plane defined by the central guanidinium fragment are in the range 51.9 (4)–64.4 (3)°. N—H(...)Cl hydrogen bonds assemble the ions into infinite chains running along the b axis.

Related literature

For related literature, see: Bian et al. (2005 [triangle]); Kemme et al. (1988 [triangle]); Klement et al. (1995 [triangle]); Pereira Silva et al. (2006 [triangle]); Pereira Silva et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1083-scheme1.jpg

Experimental

Crystal data

  • (C19H18N3)2[CuCl4]
  • M r = 782.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1083-efi1.jpg
  • a = 11.5893 (13) Å
  • b = 8.2404 (9) Å
  • c = 22.364 (2) Å
  • β = 119.423 (7)°
  • V = 1860.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 293 (2) K
  • 0.21 × 0.10 × 0.04 mm

Data collection

  • Bruker APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.744, T max = 0.964
  • 27709 measured reflections
  • 3304 independent reflections
  • 1405 reflections with I > 2σ(I)
  • R int = 0.164

Refinement

  • R[F 2 > 2σ(F 2)] = 0.097
  • wR(F 2) = 0.319
  • S = 1.05
  • 3304 reflections
  • 223 parameters
  • H-atom parameters constrained
  • Δρmax = 1.28 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023404/er2054sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023404/er2054Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

supplementary crystallographic information

Comment

Molecular based magnets, systems in which molecular orbitals are crucial in mediating the magnetic interaction, are often synthesized by mild-chemistry conditions. Furthermore, the molecules/ions often assemble in low dimensional compounds providing easier systems to study both theoretical and experimentally. Some systems are even classified as Single Molecule Magnets, since the organically bridged metal clusters, exhibit magnetic properties similar to those observed in conventional bulk magnets like remanence and hysteresis (Bian et al., 2005). The title compound, (I), Fig.1, was synthesized within a project aiming at developing new molecular based magnets. Compound (I) is built up from triphenylguanidinium cations and CuCl42- anions. The CN3 fragment of the guanidinium group in (I) is planar, as expected for sp2 hybridization of the central C atom. The bond lengths C1—N1 [1.324 (12) Å], C1—N2 [1.332 (12) Å] and C1—N3 [1.347 (12) Å] are within the range expected for a delocalized C-N bond. The dihedral angles between the ring planes and the plane defined by the central guanidinium fragment are 51.9 (4)°(C2—C7), 59.8 (4)°(C8—C13) and 64.4 (3)°(C14—C19). The corresponding angles for other triphenylguanidinium salts reported in the literature are within the range 32.6 (3)–70.2 (3)° (Kemme et al., 1988; Klement et al., 1995; Pereira Silva et al., 2006, 2007). This variability attests the flexibility of the triphenylguanidinium cation. The CuII ion occupies a crystallographic inversion centre and the environment around the metal ion is square-planar. There are hydrogen bonds between all the NH groups and the Cl- ions, each CuCl42- anion being linked to four cations, forming infinite chains along the [010] direction (Fig. 2, Table 2).

Experimental

Copper(II) chloride dihydrate (Riedel-de-Haën, pro analysis >99%, 0.125 mmol) was dissolved in 50 ml of hot water and triphenylguanidine (TCI, 97%, 0.25 mmol) was dissolved in ethanol (50 ml). The two solutions were mixed and several drops of HCl (Merck, 37%) were added. The solution was left to evaporate at room temperature and pressure. Green single crystals of (I) were obtained from the solution after a few days.

Refinement

Several crystals of (I) were probed but the Rint of all data collections was relatively high, reflecting the poor quality of the crystals. The maximum peak in the final difference Fourier map is 1.29 e Å-3 situated at 1.14 Å from the atom Cl1 and at 1.17 Å from the heavier metal atom. H atoms were placed at calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults [C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
ORTEPII (Spek,2003) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram, viewed down the a axis, with the hydrogen bonds depicted as dashed lines. The phenyl rings have been omitted for clarity.

Crystal data

(C19H18N3)2[CuCl4]F000 = 806
Mr = 782.08Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1887 reflections
a = 11.5893 (13) Åθ = 2.7–15.3º
b = 8.2404 (9) ŵ = 0.91 mm1
c = 22.364 (2) ÅT = 293 (2) K
β = 119.423 (7)ºPrism, green
V = 1860.3 (3) Å30.21 × 0.10 × 0.04 mm
Z = 2

Data collection

Bruker APEX2 CCD area-detector diffractometer3304 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.164
T = 293(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −13→13
Tmin = 0.744, Tmax = 0.964k = −9→9
27709 measured reflectionsl = −26→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.097H-atom parameters constrained
wR(F2) = 0.319  w = 1/[σ2(Fo2) + (0.1615P)2 + 0.2636P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3304 reflectionsΔρmax = 1.29 e Å3
223 parametersΔρmin = −0.52 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.50000.00000.00000.0567 (7)
Cl10.6357 (3)−0.0354 (3)0.11412 (14)0.0719 (9)
Cl20.4205 (3)0.2267 (4)0.02411 (15)0.0826 (11)
N10.7105 (8)0.4791 (9)0.0748 (4)0.055 (2)
H10.67010.56460.05210.066*
N20.7200 (9)0.5995 (10)0.1697 (4)0.062 (2)
H20.73800.69090.15760.075*
N30.7583 (8)0.3232 (10)0.1706 (4)0.057 (2)
H30.72380.23890.14530.069*
C10.7289 (10)0.4673 (11)0.1380 (6)0.055 (3)
C20.7497 (12)0.3671 (13)0.0409 (6)0.060 (3)
C30.8688 (11)0.2853 (14)0.0731 (6)0.069 (3)
H3A0.92550.29910.11990.083*
C40.9037 (14)0.1834 (15)0.0360 (7)0.085 (4)
H40.98490.13030.05770.102*
C50.8197 (15)0.1595 (17)−0.0327 (8)0.084 (4)
H50.84310.0888−0.05740.101*
C60.7024 (15)0.2395 (16)−0.0646 (6)0.086 (4)
H60.64620.2265−0.11150.103*
C70.6666 (12)0.3400 (14)−0.0272 (6)0.074 (3)
H70.58420.3903−0.04890.089*
C80.6834 (11)0.6040 (13)0.2223 (5)0.059 (3)
C90.7498 (11)0.7120 (13)0.2771 (6)0.066 (3)
H90.81640.77880.27920.079*
C100.7153 (13)0.7180 (15)0.3276 (6)0.079 (4)
H100.75820.78920.36440.094*
C110.6171 (13)0.6182 (15)0.3234 (7)0.073 (3)
H110.59430.62080.35790.087*
C120.5536 (11)0.5173 (14)0.2705 (6)0.067 (3)
H120.48740.45040.26870.081*
C130.5842 (11)0.5110 (13)0.2195 (6)0.065 (3)
H130.53690.44240.18230.078*
C140.8391 (11)0.2945 (12)0.2415 (5)0.054 (3)
C150.9571 (13)0.3811 (16)0.2788 (7)0.077 (3)
H150.98130.45840.25670.092*
C161.0364 (12)0.3537 (17)0.3468 (8)0.079 (4)
H161.11290.41460.37210.095*
C171.0011 (17)0.233 (2)0.3775 (6)0.099 (5)
H171.05680.21100.42370.118*
C180.8876 (15)0.1465 (16)0.3424 (6)0.088 (4)
H180.86480.06660.36410.106*
C190.8083 (12)0.1796 (13)0.2748 (6)0.066 (3)
H190.73000.12130.25030.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0701 (13)0.0335 (10)0.0702 (13)0.0039 (9)0.0374 (10)0.0044 (8)
Cl10.088 (2)0.0415 (16)0.0687 (18)0.0019 (14)0.0247 (17)−0.0021 (13)
Cl20.128 (3)0.0549 (18)0.082 (2)0.0388 (18)0.064 (2)0.0194 (15)
N10.074 (6)0.047 (5)0.056 (5)0.011 (4)0.040 (5)0.007 (4)
N20.101 (7)0.032 (5)0.069 (6)−0.004 (5)0.053 (6)−0.001 (4)
N30.077 (6)0.044 (5)0.053 (5)−0.005 (5)0.034 (5)0.001 (4)
C10.055 (7)0.037 (6)0.074 (8)−0.001 (5)0.033 (6)0.004 (5)
C20.074 (8)0.053 (7)0.063 (8)−0.006 (6)0.040 (7)−0.003 (6)
C30.062 (8)0.065 (8)0.090 (9)0.016 (6)0.046 (7)0.006 (6)
C40.103 (11)0.054 (8)0.114 (11)0.028 (7)0.065 (10)0.005 (7)
C50.096 (10)0.082 (9)0.100 (11)0.004 (9)0.067 (9)−0.011 (8)
C60.095 (11)0.077 (9)0.078 (9)−0.003 (8)0.036 (8)−0.023 (7)
C70.079 (8)0.065 (8)0.087 (9)0.005 (7)0.047 (8)−0.006 (7)
C80.075 (8)0.046 (6)0.055 (7)0.010 (6)0.031 (6)0.013 (5)
C90.076 (8)0.051 (7)0.069 (8)−0.005 (6)0.034 (7)−0.006 (6)
C100.097 (10)0.070 (8)0.067 (8)0.007 (8)0.039 (8)−0.011 (6)
C110.092 (9)0.063 (8)0.086 (9)0.014 (7)0.061 (8)0.009 (7)
C120.066 (7)0.067 (8)0.083 (8)0.001 (6)0.047 (7)−0.002 (7)
C130.076 (8)0.052 (7)0.068 (7)−0.016 (6)0.036 (7)−0.002 (6)
C140.064 (8)0.037 (6)0.069 (8)0.009 (5)0.039 (7)0.003 (5)
C150.081 (9)0.078 (9)0.080 (9)0.013 (8)0.047 (8)0.003 (7)
C160.055 (8)0.072 (9)0.100 (11)−0.001 (7)0.031 (8)−0.014 (8)
C170.109 (12)0.110 (13)0.056 (8)0.042 (11)0.025 (9)−0.004 (9)
C180.112 (11)0.069 (9)0.059 (9)−0.006 (9)0.022 (8)0.004 (7)
C190.079 (8)0.050 (7)0.062 (8)0.000 (6)0.030 (7)0.003 (6)

Geometric parameters (Å, °)

Cu—Cl22.263 (3)C7—H70.9300
Cu—Cl2i2.263 (3)C8—C131.358 (14)
Cu—Cl12.265 (3)C8—C91.400 (14)
Cu—Cl1i2.265 (3)C9—C101.372 (15)
N1—C11.324 (12)C9—H90.9300
N1—C21.404 (12)C10—C111.370 (16)
N1—H10.8600C10—H100.9300
N2—C11.332 (12)C11—C121.332 (15)
N2—C81.433 (12)C11—H110.9300
N2—H20.8600C12—C131.351 (14)
N3—C11.347 (12)C12—H120.9300
N3—C141.411 (12)C13—H130.9300
N3—H30.8600C14—C191.355 (14)
C2—C71.363 (14)C14—C151.398 (15)
C2—C31.379 (14)C15—C161.353 (15)
C3—C41.373 (15)C15—H150.9300
C3—H3A0.9300C16—C171.377 (19)
C4—C51.371 (15)C16—H160.9300
C4—H40.9300C17—C181.359 (19)
C5—C61.356 (16)C17—H170.9300
C5—H50.9300C18—C191.356 (14)
C6—C71.376 (15)C18—H180.9300
C6—H60.9300C19—H190.9300
Cl2—Cu—Cl2i180.00 (15)C13—C8—C9119.2 (10)
Cl2—Cu—Cl188.65 (10)C13—C8—N2122.2 (10)
Cl2i—Cu—Cl191.35 (10)C9—C8—N2118.5 (10)
Cl2—Cu—Cl1i91.35 (10)C10—C9—C8119.1 (11)
Cl2i—Cu—Cl1i88.65 (10)C10—C9—H9120.4
Cl1—Cu—Cl1i180.00 (16)C8—C9—H9120.4
C1—N1—C2127.0 (9)C11—C10—C9119.3 (12)
C1—N1—H1116.5C11—C10—H10120.3
C2—N1—H1116.5C9—C10—H10120.3
C1—N2—C8126.2 (9)C12—C11—C10120.9 (11)
C1—N2—H2116.9C12—C11—H11119.5
C8—N2—H2116.9C10—C11—H11119.5
C1—N3—C14127.5 (9)C11—C12—C13120.9 (11)
C1—N3—H3116.3C11—C12—H12119.5
C14—N3—H3116.3C13—C12—H12119.5
N1—C1—N2119.6 (9)C12—C13—C8120.5 (11)
N1—C1—N3120.5 (9)C12—C13—H13119.8
N2—C1—N3119.8 (10)C8—C13—H13119.8
C7—C2—C3118.6 (11)C19—C14—C15118.3 (11)
C7—C2—N1118.2 (10)C19—C14—N3121.7 (10)
C3—C2—N1123.2 (10)C15—C14—N3120.0 (10)
C4—C3—C2120.0 (12)C16—C15—C14120.7 (12)
C4—C3—H3A120.0C16—C15—H15119.6
C2—C3—H3A120.0C14—C15—H15119.6
C5—C4—C3120.5 (12)C15—C16—C17118.4 (13)
C5—C4—H4119.8C15—C16—H16120.8
C3—C4—H4119.8C17—C16—H16120.8
C6—C5—C4119.7 (12)C18—C17—C16122.1 (13)
C6—C5—H5120.2C18—C17—H17118.9
C4—C5—H5120.2C16—C17—H17118.9
C5—C6—C7119.8 (12)C17—C18—C19118.1 (13)
C5—C6—H6120.1C17—C18—H18120.9
C7—C6—H6120.1C19—C18—H18120.9
C2—C7—C6121.3 (12)C14—C19—C18122.3 (12)
C2—C7—H7119.4C14—C19—H19118.8
C6—C7—H7119.4C18—C19—H19118.8
C2—N1—C1—N2161.5 (10)C13—C8—C9—C101.8 (16)
C2—N1—C1—N3−17.6 (16)N2—C8—C9—C10179.7 (9)
C8—N2—C1—N1152.7 (10)C8—C9—C10—C110.1 (17)
C8—N2—C1—N3−28.2 (16)C9—C10—C11—C12−0.9 (17)
C14—N3—C1—N1146.9 (9)C10—C11—C12—C13−0.1 (18)
C14—N3—C1—N2−32.2 (15)C11—C12—C13—C82.1 (17)
C1—N1—C2—C7141.5 (11)C9—C8—C13—C12−2.9 (16)
C1—N1—C2—C3−39.4 (16)N2—C8—C13—C12179.3 (10)
C7—C2—C3—C42.3 (17)C1—N3—C14—C19141.6 (11)
N1—C2—C3—C4−176.8 (10)C1—N3—C14—C15−41.1 (15)
C2—C3—C4—C5−1.4 (19)C19—C14—C15—C16−1.8 (16)
C3—C4—C5—C61(2)N3—C14—C15—C16−179.2 (9)
C4—C5—C6—C7−2(2)C14—C15—C16—C172.9 (17)
C3—C2—C7—C6−3.2 (17)C15—C16—C17—C18−2.4 (19)
N1—C2—C7—C6175.9 (10)C16—C17—C18—C191(2)
C5—C6—C7—C23.1 (19)C15—C14—C19—C180.1 (16)
C1—N2—C8—C13−41.0 (15)N3—C14—C19—C18177.5 (10)
C1—N2—C8—C9141.1 (11)C17—C18—C19—C140.4 (18)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2ii0.862.283.126 (8)167
N2—H2···Cl1iii0.862.513.218 (8)140
N3—H3···Cl10.862.443.253 (9)159

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2054).

References

  • Bian, G.-Q., Kuroda-Sowa, T., Gunjima, N., Maekawa, M. & Munakata, M. (2005). Inorg. Chem. Commun.8, 208–211.
  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kemme, A., Rutkis, M. & Eiduss, J. (1988). Latv. PSR Zinat. Akad. Vestis Kim. Ser.5, 595–601
  • Klement, U., Range, K.-J., Hayessen, R. & Heckmann, K.-D. (1995). Z. Kristallogr.220, 611.
  • Pereira Silva, P. S., Cardoso, C., Ramos Silva, M. & Paixão, J. A. (2007). Acta Cryst. E63, o501–o503.
  • Pereira Silva, P. S., Paixão, J. A., Ramos Silva, M. & Matos Beja, A. (2006). Acta Cryst. E62, o3073–o3075.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography