PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1080.
Published online 2008 July 31. doi:  10.1107/S1600536808023349
PMCID: PMC2961989

Diazido­bis{2-[3-(dimethyl­amino)propyl­imino­meth­yl]phenol}manganese(III) perchlorate

Abstract

The title compound, [Mn(N3)2(C12H18N2O)2]ClO4, was synthesized from manganese(III) acetate, sodium azide and 2-[3-(dimethyl­amino)propyl­imino­meth­yl]phenol by a hydro­thermal reaction. The MnIII ion is hexa­coordinated by two N and two O atoms from two phenolate ligands and two N atoms from two azide ligands. The MnIII cation lies on an inversion centre and, as a result, the asymmetric unit comprises one half-mol­ecule.

Related literature

For related literature, see: Choudhury et al. (2001 [triangle]); Church & Halvorson (1959 [triangle]); Chung et al. (1971 [triangle]); Okabe & Oya (2000 [triangle]); Serre et al. (2005 [triangle]); Scapin et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1080-scheme1.jpg

Experimental

Crystal data

  • [Mn(N3)2(C12H18N2O)2]ClO4
  • M r = 651.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1080-efi1.jpg
  • a = 16.8115 (17) Å
  • b = 16.4456 (18) Å
  • c = 12.9059 (14) Å
  • β = 121.121 (8)°
  • V = 3054.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 293 (2) K
  • 0.43 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.790, T max = 0.884
  • 3388 measured reflections
  • 2842 independent reflections
  • 2216 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.144
  • S = 1.00
  • 2842 reflections
  • 195 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023349/ez2129sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023349/ez2129Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Harbin University for financial support.

supplementary crystallographic information

Comment

In recent years, Schiff base ligands have been widely used as polydentate ligands that can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Scapin et al., 1997). Herein, we report the synthesis and X-ray crystal structure analysis of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The MnIII cation lies on an inversion centre, as a consequence the asymmetric unit comprises half of the molecule. The MnIII ion is hexacoordinated by two N and two O atoms from two 2-[3-(dimethylamino)propyliminomethyl]phenolate ligands and two N atoms from two azide ligands.

Experimental

The title compound was synthesized according to the following two steps:

(i) Synthesis of the ligand: 2-[3-(dimethylamino)propyliminomethyl]phenol was prepared by refluxing 3-dimethylamino-1-propylamine (1.0 mmol) and salicylaldehyde (1.0 mmol) in ethanol (25 ml) for two hours and used without further purification, according to the literature method (see: Choudhury et al., 2001).

(ii) Synthesis of the complex: A solution of sodium azide (0.5 mmol) and sodium perchlorate (0.05 mmol) in 5 ml water was added to the ethanol solution of the ligand (1.0 mmol). Then manganese(III) acetate dihydrate (0.5 mmol) in 3 ml water was added to the above mixture. A yellow mixture was obtained by refluxing for 3 h and was left to stand undisturbed. Upon slow evaporation at room temperature, light yellow prismatic crystals suitable for X-ray diffraction appeared three days later and were separated by filtration.

Refinement

The H atom on O1 was located from a difference density map and was refined with a distance restraint of d(O—H) = 0.82 (2) Å. All other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Crystal data

[Mn(N3)2(C12H18N2O)2]ClO4F000 = 1360
Mr = 651.02Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2842 reflections
a = 16.8115 (17) Åθ = 1.9–25.5º
b = 16.4456 (18) ŵ = 0.58 mm1
c = 12.9059 (14) ÅT = 293 (2) K
β = 121.121 (8)ºPrism, yellow
V = 3054.6 (6) Å30.43 × 0.28 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2842 independent reflections
Radiation source: fine-focus sealed tube2216 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
T = 293(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −20→1
Tmin = 0.790, Tmax = 0.884k = −1→19
3388 measured reflectionsl = −13→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144  w = 1/[σ2(Fo2) + (0.0843P)2 + 2.1116P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2842 reflectionsΔρmax = 0.48 e Å3
195 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.25000.25000.50000.0467 (2)
Cl10.00000.15323 (8)0.75000.0711 (3)
O10.28801 (14)0.20397 (12)0.40192 (19)0.0626 (5)
O20.0690 (2)0.2006 (3)0.7580 (4)0.1579 (17)
O30.0340 (3)0.1044 (2)0.8529 (3)0.1482 (15)
N10.13856 (14)0.16698 (13)0.43275 (19)0.0481 (5)
N2−0.12645 (16)0.32706 (14)0.3901 (2)0.0576 (6)
N30.33339 (17)0.16169 (15)0.6490 (2)0.0603 (6)
N40.36786 (18)0.10586 (17)0.6266 (2)0.0649 (6)
N50.4004 (3)0.0528 (2)0.6034 (4)0.0980 (10)
C10.25785 (18)0.14208 (15)0.3267 (2)0.0497 (6)
C20.18274 (18)0.09312 (16)0.3069 (2)0.0523 (6)
C30.1561 (2)0.0279 (2)0.2252 (3)0.0730 (9)
H3A0.1071−0.00550.21230.088*
C40.2015 (3)0.0129 (2)0.1639 (4)0.0896 (11)
H4A0.1828−0.03000.10920.108*
C50.2746 (3)0.0614 (2)0.1835 (3)0.0791 (10)
H5A0.30500.05120.14170.095*
C60.3033 (2)0.12473 (19)0.2640 (3)0.0633 (7)
H6A0.35340.15650.27710.076*
C70.12924 (18)0.10820 (16)0.3631 (2)0.0513 (6)
H7A0.08260.07080.34670.062*
C80.06994 (18)0.17367 (16)0.4719 (3)0.0532 (6)
H8A0.10220.18060.55900.064*
H8B0.03360.12410.45130.064*
C90.0061 (2)0.24542 (17)0.4104 (3)0.0572 (7)
H9A−0.02470.23890.32330.069*
H9B0.04270.29490.43220.069*
C10−0.0665 (2)0.25332 (17)0.4460 (3)0.0583 (7)
H10A−0.10530.20510.42030.070*
H10B−0.03580.25700.53350.070*
C11−0.0775 (3)0.4036 (2)0.4465 (4)0.0850 (10)
H11A−0.02160.40660.44380.127*
H11B−0.06210.40520.52920.127*
H11C−0.11690.44880.40330.127*
C12−0.2131 (2)0.3213 (2)0.3943 (4)0.0844 (11)
H12A−0.25010.36910.35850.127*
H12B−0.19740.31700.47700.127*
H12C−0.24770.27420.35020.127*
H1A0.313 (2)0.2343 (11)0.376 (3)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0433 (3)0.0501 (3)0.0527 (3)−0.0081 (2)0.0290 (3)−0.0109 (2)
Cl10.0692 (7)0.0852 (8)0.0727 (7)0.0000.0465 (6)0.000
O10.0654 (12)0.0654 (12)0.0774 (13)−0.0213 (10)0.0513 (11)−0.0260 (10)
O20.083 (2)0.220 (4)0.168 (4)−0.032 (3)0.062 (2)0.055 (3)
O30.219 (4)0.128 (3)0.087 (2)−0.018 (3)0.071 (2)0.0178 (19)
N10.0422 (11)0.0487 (12)0.0532 (12)−0.0003 (9)0.0244 (9)0.0002 (10)
N20.0499 (12)0.0601 (14)0.0690 (14)0.0035 (11)0.0352 (11)−0.0025 (11)
N30.0555 (13)0.0637 (15)0.0616 (14)−0.0029 (12)0.0301 (12)0.0023 (12)
N40.0647 (15)0.0638 (16)0.0727 (16)−0.0071 (13)0.0401 (14)0.0059 (13)
N50.127 (3)0.0709 (19)0.135 (3)0.0137 (19)0.096 (3)0.0101 (19)
C10.0521 (14)0.0471 (13)0.0497 (14)0.0050 (11)0.0262 (12)−0.0020 (11)
C20.0484 (14)0.0480 (14)0.0532 (14)0.0048 (11)0.0212 (12)−0.0027 (11)
C30.073 (2)0.0593 (17)0.079 (2)−0.0060 (15)0.0346 (17)−0.0179 (16)
C40.102 (3)0.079 (2)0.094 (3)−0.008 (2)0.055 (2)−0.039 (2)
C50.095 (3)0.080 (2)0.079 (2)0.006 (2)0.057 (2)−0.0181 (18)
C60.0683 (18)0.0650 (17)0.0686 (18)0.0052 (15)0.0438 (15)−0.0039 (14)
C70.0425 (13)0.0456 (14)0.0567 (15)−0.0028 (11)0.0190 (11)0.0005 (12)
C80.0428 (13)0.0569 (15)0.0642 (16)−0.0031 (12)0.0307 (12)0.0028 (13)
C90.0483 (15)0.0666 (18)0.0628 (17)0.0030 (13)0.0329 (13)0.0054 (13)
C100.0521 (16)0.0656 (18)0.0652 (17)0.0022 (13)0.0359 (14)0.0042 (13)
C110.082 (2)0.068 (2)0.114 (3)−0.0071 (18)0.056 (2)−0.019 (2)
C120.0615 (19)0.089 (2)0.119 (3)0.0021 (18)0.059 (2)−0.008 (2)

Geometric parameters (Å, °)

Mn1—O11.8493 (18)C3—C41.377 (5)
Mn1—O1i1.8493 (18)C3—H3A0.9300
Mn1—N1i2.109 (2)C4—C51.374 (5)
Mn1—N12.109 (2)C4—H4A0.9300
Mn1—N3i2.233 (2)C5—C61.370 (4)
Mn1—N32.233 (2)C5—H5A0.9300
Cl1—O21.357 (3)C6—H6A0.9300
Cl1—O2ii1.357 (3)C7—H7A0.9300
Cl1—O3ii1.397 (3)C8—C91.515 (4)
Cl1—O31.397 (3)C8—H8A0.9700
O1—C11.314 (3)C8—H8B0.9700
O1—H1A0.828 (9)C9—C101.516 (4)
N1—C71.273 (3)C9—H9A0.9700
N1—C81.483 (3)C9—H9B0.9700
N2—C111.474 (4)C10—H10A0.9700
N2—C121.489 (4)C10—H10B0.9700
N2—C101.502 (4)C11—H11A0.9600
N3—N41.199 (4)C11—H11B0.9600
N4—N51.149 (4)C11—H11C0.9600
C1—C61.400 (4)C12—H12A0.9600
C1—C21.405 (4)C12—H12B0.9600
C2—C31.405 (4)C12—H12C0.9600
C2—C71.439 (4)
O1—Mn1—O1i180.00 (8)C5—C4—H4A120.0
O1—Mn1—N1i89.94 (8)C3—C4—H4A120.0
O1i—Mn1—N1i90.06 (8)C6—C5—C4120.8 (3)
O1—Mn1—N190.06 (8)C6—C5—H5A119.6
O1i—Mn1—N189.94 (8)C4—C5—H5A119.6
N1i—Mn1—N1180.00 (13)C5—C6—C1120.7 (3)
O1—Mn1—N3i87.82 (10)C5—C6—H6A119.7
O1i—Mn1—N3i92.18 (10)C1—C6—H6A119.7
N1i—Mn1—N3i87.83 (8)N1—C7—C2127.3 (2)
N1—Mn1—N3i92.17 (8)N1—C7—H7A116.4
O1—Mn1—N392.18 (10)C2—C7—H7A116.4
O1i—Mn1—N387.82 (10)N1—C8—C9110.2 (2)
N1i—Mn1—N392.17 (8)N1—C8—H8A109.6
N1—Mn1—N387.83 (8)C9—C8—H8A109.6
N3i—Mn1—N3180.0N1—C8—H8B109.6
O2—Cl1—O2ii109.9 (5)C9—C8—H8B109.6
O2—Cl1—O3ii108.4 (3)H8A—C8—H8B108.1
O2ii—Cl1—O3ii110.1 (2)C8—C9—C10111.8 (2)
O2—Cl1—O3110.1 (2)C8—C9—H9A109.2
O2ii—Cl1—O3108.4 (3)C10—C9—H9A109.2
O3ii—Cl1—O3109.8 (3)C8—C9—H9B109.3
C1—O1—Mn1133.21 (18)C10—C9—H9B109.3
C1—O1—H1A104.7 (14)H9A—C9—H9B107.9
Mn1—O1—H1A117.3 (13)N2—C10—C9111.7 (2)
C7—N1—C8117.6 (2)N2—C10—H10A109.3
C7—N1—Mn1122.76 (18)C9—C10—H10A109.3
C8—N1—Mn1119.59 (17)N2—C10—H10B109.3
C11—N2—C12110.1 (3)C9—C10—H10B109.3
C11—N2—C10112.8 (2)H10A—C10—H10B107.9
C12—N2—C10111.0 (3)N2—C11—H11A109.5
N4—N3—Mn1117.2 (2)N2—C11—H11B109.5
N5—N4—N3179.0 (3)H11A—C11—H11B109.5
O1—C1—C6117.9 (3)N2—C11—H11C109.5
O1—C1—C2123.1 (2)H11A—C11—H11C109.5
C6—C1—C2119.0 (3)H11B—C11—H11C109.5
C1—C2—C3118.8 (3)N2—C12—H12A109.5
C1—C2—C7123.1 (2)N2—C12—H12B109.5
C3—C2—C7118.0 (3)H12A—C12—H12B109.5
C4—C3—C2120.7 (3)N2—C12—H12C109.5
C4—C3—H3A119.6H12A—C12—H12C109.5
C2—C3—H3A119.6H12B—C12—H12C109.5
C5—C4—C3119.9 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2129).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr 31, 57–62.
  • Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J.11, 469–475. [PubMed]
  • Church, B. D. & Halvorson, H. (1959). Nature (London), 183, 124–125. [PubMed]
  • Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417. [PubMed]
  • Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088. [PubMed]
  • Serre, C., Marrot, J. & Feréy, G. (2005). Inorg. Chem.44, 654–658. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography