PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1078–m1079.
Published online 2008 July 26. doi:  10.1107/S1600536808022824
PMCID: PMC2961988

catena-Poly[[aqua­(dipyrido[3,2-a:2′,3′-c]phenazine-κ2 N 4,N 5)zinc(II)]-μ-pyrazine-2,3-dicarboxyl­ato-κ3 N 1,O 2:O 3]

Abstract

In the title compound, [Zn(C6H2N2O4)(C18H10N4)(H2O)]n or [Zn(PZDC)(DPPZ)(H2O)]n (where DPPZ is dipyrido[3,2-a:2′,3′-c]phenazine and H2PZDC is pyrazine-2,3-dicarboxylic acid), the Zn atom is six-coordinated in a slightly distorted octa­hedral coordination geometry by three N atoms from one DPPZ ligand and one PZDC2− dianion, three O atoms from two different PZDC2− ligands and one water mol­ecule. Each PZDC2− dianion serves as a spacer, connecting adjacent metal atoms into a polymeric chain structure parallel to the b axis. The chain motif is consolidated into a three-dimensional supra­molecular network by O—H(...)O and O—H(...)N hydrogen bonds and π–π aromatic stacking inter­actions involving adjacent DPPZ ligands and PZDC2− dianions with centroid–centroid separations of 3.522 (6) and 3.732 (8) Å, respectively.

Related literature

For related literature, see: Che et al. (2008 [triangle]); Che, Li et al. (2006 [triangle]); Che, Xu & Liu (2006 [triangle]); Liu et al. (2008 [triangle]); Xu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1078-scheme1.jpg

Experimental

Crystal data

  • [Zn(C6H2N2O4)(C18H10N4)(H2O)]
  • M r = 531.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1078-efi1.jpg
  • a = 6.7821 (14) Å
  • b = 7.4349 (15) Å
  • c = 20.410 (4) Å
  • α = 91.26 (3)°
  • β = 95.77 (3)°
  • γ = 98.16 (3)°
  • V = 1012.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.27 mm−1
  • T = 292 (2) K
  • 0.31 × 0.29 × 0.21 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.681, T max = 0.765
  • 9890 measured reflections
  • 4412 independent reflections
  • 3278 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.148
  • S = 1.07
  • 4412 reflections
  • 333 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022824/rz2235sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022824/rz2235Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Doctoral Foundation of Jilin Normal University (grant Nos. 2006006 and 2007009) and the Subject and Base Construction Foundation of Jilin Normal University (grant No. 2006041).

supplementary crystallographic information

Comment

A successful strategy for preparing metal-organic supramolecular architectures is the assembly reaction between a transition d10 metal ion and two types of ligands with one acting as a bridging ligand and the other as a chelating ligand (Liu et al., 2008; Che et al., 2008). Pyrazine-2,3-dicarboxylic acid (H2PZDC) possesses the ability to bridge and chelate metal atoms using the carboxylate oxygen atoms and nitrogen atoms (Xu et al., 2008). 1,10-Phenanthroline (phen) and its derivatives are important chelating ligands for the construction of metal-organic complexes (Che, Xu & Liu, 2006). Dipyrido[3,2-a:2',3'-c]-phenazine (DPPZ) as a phen derivative possesses potential supramolecular recognition sites for π-π aromatic stacking interactions. The present attempt at synthesizing a new zinc polymer with DPPZ and H2PZDC gave the title complex, [Zn(DPPZ)(PZDC)(H2O)]n, whose structure is reported here.

The Zn atom is six-coordinated by three N atoms from one DPPZ ligand and one PZDC2- ligand, and three O atoms from two different PZDC2- ligands and one water molecule in a slightly distorted octahedral coordination geometry (Fig. 1). The Zn—O distances range from 2.051 (3) Å to 2.172 (3) Å and the Zn—N lengths from 2.130 (3) Å to 2.167 (3) Å (Table 1). Each PZDC2- dianion serves as a spacer to connect adjacent metal centres into a one-dimensional chain structure parallel to the b axis. Neighbouring chains interact through π-π contacts, leading to a three-dimensional supramolecular structure (Fig. 2). There are two types of π-π interactions, occurring between adjacent DPPZ ligands (centroid-to-centroid separation = 3.732 (8) Å) and PZDC2- anions (centroid-to-centroid separation = 3.522 (6) Å). Hydrogen bonds involving the O1W atom as donor and the N6 and O3 atoms of the PZDC2- dianion as acceptors further stabilize the structure (Table 2).

Experimental

The DPPZ ligand was synthesized according to the literature method (Che, Li et al., 2006). The title compound was hydrothermally synthesized under autogenous pressure: a mixture of DPPZ, H2PZDC, ZnNO3 and water in a molar ratio of 1:1:1:5000 was sealed in a Teflon-lined autoclave and heated to 433 K for 3 d. Upon cooling and opening the bomb, yellow blocks of the title compound were obtained (83% yield based on Zn).

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C). The hydrogen atoms of water molecule were located from a difference Fourier map and refined freely.

Figures

Fig. 1.
A view of the title compound. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) x, y + 1, z.]
Fig. 2.
Packing diagram of the three-dimensional supramolecular structure of the title compound formed viaπ-π interactions. H atoms are omitted for clarity.

Crystal data

[Zn(C6H2N2O4)(C18H10N4)(H2O)]Z = 2
Mr = 531.78F000 = 540
Triclinic, P1Dx = 1.744 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.7821 (14) ÅCell parameters from 4412 reflections
b = 7.4349 (15) Åθ = 3.0–27.5º
c = 20.410 (4) ŵ = 1.27 mm1
α = 91.26 (3)ºT = 292 (2) K
β = 95.77 (3)ºBlock, yellow
γ = 98.16 (3)º0.31 × 0.29 × 0.21 mm
V = 1012.9 (4) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer4412 independent reflections
Radiation source: fine-focus sealed tube3278 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
Detector resolution: 10.0 pixels mm-1θmax = 27.5º
T = 292(2) Kθmin = 3.0º
ω scansh = −8→8
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −9→8
Tmin = 0.681, Tmax = 0.765l = −26→26
9890 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148  w = 1/[σ2(Fo2) + (0.084P)2 + 0.1727P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4412 reflectionsΔρmax = 0.42 e Å3
333 parametersΔρmin = −0.58 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.3785 (6)0.2965 (5)0.7826 (2)0.0344 (9)
H1−0.44260.30290.82060.041*
C2−0.4723 (6)0.1853 (6)0.7307 (2)0.0375 (10)
H2−0.59310.11190.73490.045*
C3−0.3868 (6)0.1832 (6)0.6728 (2)0.0395 (10)
H3−0.45280.11440.63640.047*
C4−0.1986 (6)0.2861 (5)0.6690 (2)0.0291 (8)
C5−0.0963 (6)0.2913 (5)0.60945 (19)0.0283 (8)
C6−0.0924 (7)0.2081 (5)0.5015 (2)0.0352 (9)
C7−0.1870 (8)0.1180 (6)0.4421 (2)0.0443 (11)
H7−0.31850.06010.44000.053*
C8−0.0836 (8)0.1170 (6)0.3880 (2)0.0493 (12)
H8−0.14580.05820.34910.059*
C90.1164 (9)0.2037 (6)0.3903 (2)0.0514 (12)
H90.18450.20030.35310.062*
C100.2107 (8)0.2921 (7)0.4464 (2)0.0479 (12)
H100.34200.34960.44710.058*
C110.1095 (7)0.2967 (6)0.5036 (2)0.0379 (10)
C120.1042 (6)0.3850 (5)0.61078 (19)0.0292 (8)
C130.1983 (6)0.4856 (5)0.67084 (19)0.0286 (8)
C140.3909 (6)0.5847 (6)0.6747 (2)0.0345 (9)
H140.46370.58830.63840.041*
C150.4710 (6)0.6763 (6)0.7322 (2)0.0346 (9)
H150.59790.74440.73530.041*
C160.3603 (6)0.6662 (5)0.7859 (2)0.0326 (9)
H160.41650.72640.82530.039*
C170.0958 (5)0.4841 (5)0.72651 (18)0.0242 (7)
C18−0.1092 (5)0.3868 (5)0.72530 (18)0.0256 (8)
C190.1302 (5)0.9551 (5)0.89690 (18)0.0237 (7)
C200.1992 (5)1.1069 (5)0.93824 (19)0.0247 (8)
C210.2685 (6)0.9238 (5)1.02315 (19)0.0288 (8)
H210.31210.90901.06710.035*
C220.2102 (5)0.7712 (5)0.98204 (19)0.0261 (8)
H220.22350.65660.99780.031*
C230.0378 (6)0.9589 (5)0.82528 (19)0.0271 (8)
C240.2040 (5)1.3019 (5)0.91602 (18)0.0249 (8)
N1−0.1984 (5)0.3963 (4)0.78077 (16)0.0267 (7)
N20.1761 (5)0.5730 (4)0.78317 (15)0.0271 (7)
N3−0.1925 (5)0.2047 (4)0.55512 (17)0.0349 (8)
N40.2041 (5)0.3872 (5)0.55828 (17)0.0348 (8)
N50.1356 (4)0.7877 (4)0.92032 (15)0.0234 (6)
N60.2640 (5)1.0909 (4)1.00185 (16)0.0281 (7)
O1−0.0880 (4)0.8227 (4)0.80655 (14)0.0362 (7)
O20.0974 (5)1.0921 (4)0.79424 (15)0.0410 (7)
O1W−0.2753 (5)0.5957 (5)0.91335 (17)0.0389 (8)
O30.3705 (4)1.3872 (4)0.91050 (17)0.0427 (8)
O40.0381 (4)1.3587 (3)0.90882 (14)0.0305 (6)
Zn−0.03443 (6)0.57612 (5)0.85620 (2)0.02642 (16)
HW1A−0.368 (8)0.552 (8)0.909 (3)0.054 (19)*
HW1B−0.295 (7)0.692 (7)0.930 (2)0.034 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.034 (2)0.031 (2)0.037 (2)−0.0052 (17)0.0120 (17)−0.0021 (17)
C20.032 (2)0.036 (2)0.042 (2)−0.0062 (18)0.0058 (18)−0.0039 (18)
C30.038 (2)0.037 (2)0.038 (2)−0.0082 (19)0.0014 (18)−0.0108 (18)
C40.0326 (19)0.0232 (18)0.030 (2)−0.0004 (15)0.0040 (16)−0.0055 (15)
C50.0333 (19)0.0250 (18)0.0254 (19)0.0033 (16)−0.0004 (15)−0.0022 (15)
C60.047 (2)0.032 (2)0.027 (2)0.0109 (19)−0.0004 (18)−0.0010 (16)
C70.058 (3)0.040 (2)0.032 (2)0.008 (2)−0.006 (2)−0.0054 (18)
C80.080 (4)0.040 (2)0.026 (2)0.015 (2)−0.011 (2)−0.0046 (18)
C90.082 (4)0.043 (3)0.032 (2)0.011 (3)0.019 (2)−0.003 (2)
C100.065 (3)0.048 (3)0.033 (2)0.011 (2)0.013 (2)−0.001 (2)
C110.050 (2)0.034 (2)0.030 (2)0.007 (2)0.0097 (19)−0.0021 (17)
C120.0334 (19)0.0291 (19)0.025 (2)0.0046 (16)0.0045 (16)−0.0019 (15)
C130.0273 (18)0.0256 (19)0.031 (2)−0.0009 (15)−0.0011 (15)0.0024 (15)
C140.033 (2)0.037 (2)0.035 (2)0.0046 (17)0.0107 (17)0.0014 (17)
C150.0257 (18)0.039 (2)0.037 (2)−0.0023 (17)0.0029 (17)0.0059 (18)
C160.032 (2)0.034 (2)0.029 (2)−0.0023 (17)−0.0001 (16)−0.0016 (16)
C170.0242 (17)0.0212 (17)0.0275 (19)0.0049 (14)0.0029 (14)0.0012 (14)
C180.0274 (18)0.0208 (17)0.0273 (19)0.0009 (14)−0.0003 (15)0.0009 (14)
C190.0223 (16)0.0213 (17)0.0269 (19)−0.0007 (14)0.0061 (14)−0.0005 (14)
C200.0207 (16)0.0185 (17)0.034 (2)−0.0023 (14)0.0084 (15)−0.0024 (15)
C210.0315 (18)0.0289 (19)0.0245 (19)−0.0020 (16)0.0060 (15)−0.0003 (15)
C220.0281 (18)0.0223 (17)0.029 (2)0.0052 (15)0.0045 (15)0.0031 (15)
C230.0302 (18)0.0231 (18)0.028 (2)0.0050 (15)0.0032 (15)0.0015 (15)
C240.0307 (18)0.0192 (16)0.0228 (18)−0.0046 (15)0.0066 (15)−0.0052 (13)
N10.0270 (15)0.0228 (15)0.0294 (17)−0.0004 (13)0.0050 (13)−0.0041 (12)
N20.0301 (16)0.0242 (15)0.0240 (16)−0.0034 (13)−0.0008 (13)−0.0030 (12)
N30.0423 (19)0.0304 (17)0.0305 (19)0.0023 (15)0.0017 (15)−0.0043 (14)
N40.0417 (19)0.0354 (18)0.0265 (18)0.0027 (15)0.0038 (15)−0.0016 (14)
N50.0243 (14)0.0201 (14)0.0260 (16)0.0017 (12)0.0060 (12)0.0013 (12)
N60.0277 (15)0.0260 (16)0.0294 (17)−0.0008 (13)0.0049 (13)−0.0033 (13)
O10.0410 (15)0.0258 (14)0.0365 (16)−0.0014 (12)−0.0119 (13)0.0002 (12)
O20.0549 (19)0.0329 (15)0.0347 (17)0.0005 (14)0.0095 (14)0.0072 (12)
O1W0.0271 (16)0.0357 (18)0.052 (2)−0.0066 (14)0.0164 (14)−0.0192 (15)
O30.0335 (15)0.0341 (16)0.057 (2)−0.0112 (13)0.0087 (14)0.0051 (14)
O40.0342 (14)0.0237 (13)0.0367 (16)0.0096 (11)0.0091 (12)0.0088 (11)
Zn0.0313 (3)0.0203 (2)0.0259 (3)−0.00162 (17)0.00328 (17)−0.00223 (16)

Geometric parameters (Å, °)

C1—N11.341 (5)C15—H150.9300
C1—C21.374 (6)C16—N21.335 (5)
C1—H10.9300C16—H160.9300
C2—C31.369 (6)C17—N21.345 (5)
C2—H20.9300C17—C181.471 (5)
C3—C41.402 (5)C18—N11.341 (5)
C3—H30.9300C19—N51.347 (4)
C4—C181.393 (5)C19—C201.390 (5)
C4—C51.457 (5)C19—C231.534 (5)
C5—N31.332 (5)C20—N61.342 (5)
C5—C121.435 (5)C20—C241.525 (5)
C6—N31.344 (5)C21—N61.328 (5)
C6—C71.420 (6)C21—C221.383 (5)
C6—C111.429 (6)C21—H210.9300
C7—C81.367 (7)C22—N51.325 (5)
C7—H70.9300C22—H220.9300
C8—C91.412 (7)C23—O21.229 (4)
C8—H80.9300C23—O11.253 (5)
C9—C101.360 (7)C24—O31.231 (4)
C9—H90.9300C24—O41.254 (5)
C10—C111.414 (6)N1—Zn2.130 (3)
C10—H100.9300N2—Zn2.167 (3)
C11—N41.346 (5)N5—Zn2.147 (3)
C12—N41.324 (5)O1—Zn2.172 (3)
C12—C131.462 (5)O1W—Zn2.120 (3)
C13—C171.390 (5)O1W—HW1A0.66 (5)
C13—C141.399 (5)O1W—HW1B0.82 (5)
C14—C151.367 (6)O4—Zni2.051 (3)
C14—H140.9300Zn—O4ii2.051 (3)
C15—C161.387 (6)
N1—C1—C2122.7 (4)N1—C18—C17116.8 (3)
N1—C1—H1118.6C4—C18—C17119.9 (3)
C2—C1—H1118.6N5—C19—C20119.5 (3)
C3—C2—C1119.5 (4)N5—C19—C23115.0 (3)
C3—C2—H2120.2C20—C19—C23125.5 (3)
C1—C2—H2120.2N6—C20—C19121.5 (3)
C2—C3—C4119.2 (4)N6—C20—C24115.0 (3)
C2—C3—H3120.4C19—C20—C24123.5 (3)
C4—C3—H3120.4N6—C21—C22122.1 (4)
C18—C4—C3117.3 (4)N6—C21—H21119.0
C18—C4—C5119.9 (3)C22—C21—H21119.0
C3—C4—C5122.9 (4)N5—C22—C21120.2 (3)
N3—C5—C12121.8 (4)N5—C22—H22119.9
N3—C5—C4118.3 (3)C21—C22—H22119.9
C12—C5—C4120.0 (3)O2—C23—O1129.1 (4)
N3—C6—C7119.4 (4)O2—C23—C19116.4 (3)
N3—C6—C11121.2 (4)O1—C23—C19114.5 (3)
C7—C6—C11119.3 (4)O3—C24—O4127.8 (3)
C8—C7—C6119.6 (5)O3—C24—C20116.4 (3)
C8—C7—H7120.2O4—C24—C20115.7 (3)
C6—C7—H7120.2C1—N1—C18117.8 (3)
C7—C8—C9121.0 (4)C1—N1—Zn127.4 (3)
C7—C8—H8119.5C18—N1—Zn114.9 (2)
C9—C8—H8119.5C16—N2—C17118.8 (3)
C10—C9—C8120.8 (5)C16—N2—Zn127.2 (3)
C10—C9—H9119.6C17—N2—Zn113.4 (2)
C8—C9—H9119.6C5—N3—C6116.8 (4)
C9—C10—C11120.1 (5)C12—N4—C11117.0 (4)
C9—C10—H10119.9C22—N5—C19119.2 (3)
C11—C10—H10119.9C22—N5—Zn126.6 (2)
N4—C11—C10119.3 (4)C19—N5—Zn113.1 (2)
N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)
C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)
N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)
N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)
C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)
C17—C13—C14118.0 (4)C24—O4—Zni127.6 (2)
C17—C13—C12119.8 (3)O4ii—Zn—O1W90.19 (13)
C14—C13—C12122.2 (4)O4ii—Zn—N190.37 (12)
C15—C14—C13119.5 (4)O1W—Zn—N196.93 (13)
C15—C14—H14120.2O4ii—Zn—N597.78 (12)
C13—C14—H14120.2O1W—Zn—N586.87 (13)
C14—C15—C16119.0 (4)N1—Zn—N5171.02 (11)
C14—C15—H15120.5O4ii—Zn—N298.61 (11)
C16—C15—H15120.5O1W—Zn—N2169.43 (13)
N2—C16—C15122.4 (4)N1—Zn—N277.29 (11)
N2—C16—H16118.8N5—Zn—N297.65 (12)
C15—C16—H16118.8O4ii—Zn—O1174.40 (11)
N2—C17—C13122.3 (3)O1W—Zn—O190.70 (13)
N2—C17—C18116.9 (3)N1—Zn—O195.01 (11)
C13—C17—C18120.8 (3)N5—Zn—O176.76 (11)
N1—C18—C4123.3 (3)N2—Zn—O181.10 (12)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—HW1A···O3iii0.66 (5)2.01 (5)2.662 (4)169 (7)
O1W—HW1B···N6iv0.82 (5)2.07 (5)2.859 (5)159 (4)

Symmetry codes: (iii) x−1, y−1, z; (iv) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2235).

References

  • Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun.36, 2519–2524.
  • Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.
  • Che, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1695–m1696.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, C.-B., Che, G.-B., Wang, Q.-W. & Xu, Z.-L. (2008). Chin. J. Inorg. Chem.24, 835–838.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem.27, 593–597.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography