PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1077.
Published online 2008 July 26. doi:  10.1107/S1600536808022952
PMCID: PMC2961987

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2011 March 01; 67(Pt 3): e14    See also: PMC Retraction Policy

Bis(pentane-2,4-dionato-κ2 O,O′)bis­[4,4,5,5-tetra­methyl-2-(4-pyridyl)­imidazoline-1-oxyl 3-oxide-κN 2]manganese(II)

Abstract

The title compound, [Mn(C5H7O2)2(C12H16N3O2)2], is isostructural with its NiII-containing analogue [Hao, Mu & Kong (2008 [triangle]). Acta Cryst. E64, m957]. The asymmetric unit comprises one-half of the mol­ecule and the MnII ion is located on an inversion centre. The coordination geometry around the MnII ion is slightly distorted octa­hedral, comprised of four O and two N atoms, in which the four O atoms in the equatorial plane come from two pentane-2,4-dionate ligands and the two N atoms in the axial coordination sites from 4,4,5,5-tetra­methyl-2-(4-pyrid­yl)imidazoline-1-oxyl 3-oxide.

Related literature

For related literature, see: Eddaoudi et al. (2000 [triangle]); Hye & Myunghyun (1998 [triangle]); Li et al. (1999 [triangle]); Tabares et al. (2001 [triangle]). For the isostructural NiII-containing compound, see: Hao et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1077-scheme1.jpg

Experimental

Crystal data

  • [Mn(C5H7O2)2(C12H16N3O2)2]
  • M r = 721.71
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1077-efi1.jpg
  • a = 7.107 (2) Å
  • b = 10.018 (2) Å
  • c = 12.786 (2) Å
  • α = 98.16 (3)°
  • β = 103.20 (3)°
  • γ = 92.76 (3)°
  • V = 874.3 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.44 mm−1
  • T = 298 (2) K
  • 0.39 × 0.28 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.848, T max = 0.929
  • 6447 measured reflections
  • 3371 independent reflections
  • 2590 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.114
  • S = 1.00
  • 3371 reflections
  • 229 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022952/bx2160sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022952/bx2160Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of China (grant No. 20501011) and Liaocheng University (grant No. X071011) for financial support.

supplementary crystallographic information

Comment

Due to the interesting structures from supramolecular assemblies as well as potential applications on smart optoelectronic, magnetic and porous materials, the design and synthesis of metal–organic coordination polymers have attracted considerable attention (Eddaoudi et al., 2000; Hye & Myunghyun, 1998; Li et al., 1999; Tabares et al., 2001). In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, the asymmetric unit comprises a half of the molecule and MnII ion locates on an inversion centre. The coordination geometry around MnII is slightly distorted octahedral, comprised of four O and two N atoms. In which, the four oxygen atoms in the equatorial plane come from two pentane-2,4-dionate and the two nitrogen atoms in the axial coordination sites from 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The Mn—N and Mn—O bond lengths are in the range of 2.178 (2)–2.178 (2) and 2.0151 (17)–2.0386 (17) Å, respectively.

Experimental

A mixture of Manganese(II) acetylacetonate (0.5 mmol) and 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (1 mmol) in 20 ml methanol was refluxed for one day. The resulted solution was filtered. The filtrate was kept in the open flask and evaporated naturally at room temperature. Several days later, pink blocks of (I) were obtained with a high yield of ca 67% based on MnII. Anal. Calc. for C34H46MnN6O8: C 56.53, H 6.37, N 11.64%; Found: C 56.45, H 6.29, N 11.58%.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and C—H = 0.96 distances and refined as riding with Uiso(H) = 1.2 and 1.5 Ueq(carrier).

Figures

Fig. 1.
The molecular structure of (I) around MnII, drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Crystal data

[Mn(C5H7O2)2(C12H16N3O2)2]Z = 1
Mr = 721.71F000 = 381
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.107 (2) ÅCell parameters from 3371 reflections
b = 10.018 (2) Åθ = 3.0–26.1º
c = 12.786 (2) ŵ = 0.44 mm1
α = 98.16 (3)ºT = 298 (2) K
β = 103.20 (3)ºBlock, pink
γ = 92.76 (3)º0.39 × 0.28 × 0.17 mm
V = 874.3 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3371 independent reflections
Radiation source: fine-focus sealed tube2590 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 298(2) Kθmax = 26.1º
[var phi] and ω scansθmin = 3.0º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −6→8
Tmin = 0.848, Tmax = 0.930k = −12→12
6447 measured reflectionsl = −11→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114  w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3371 reflectionsΔρmax = 0.56 e Å3
229 parametersΔρmin = −0.50 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.00000.00000.00000.0281 (7)
C1−0.1322 (4)0.3856 (3)0.1293 (2)0.0310 (6)
H1A−0.26960.38350.10060.046*
H1B−0.07310.47420.13050.046*
H1C−0.10690.36440.20190.046*
C2−0.0486 (3)0.2828 (2)0.05829 (19)0.0231 (5)
C30.1138 (4)0.3209 (3)0.0230 (2)0.0257 (6)
H30.16650.41000.04560.031*
C40.2049 (3)0.2369 (2)−0.0433 (2)0.0241 (6)
C50.3726 (4)0.2934 (3)−0.0814 (2)0.0327 (6)
H5A0.48790.2528−0.05070.049*
H5B0.39140.3896−0.05850.049*
H5C0.34580.2740−0.15930.049*
C60.1702 (3)0.1166 (2)0.23876 (19)0.0219 (5)
H60.03860.12390.23390.026*
C70.2971 (3)0.1613 (2)0.3372 (2)0.0220 (5)
H70.25200.19800.39690.026*
C80.5527 (4)0.0957 (3)0.2535 (2)0.0243 (6)
H80.68330.08700.25600.029*
C90.4137 (3)0.0539 (2)0.1579 (2)0.0229 (5)
H90.45440.01770.09640.027*
C100.4945 (3)0.1510 (2)0.3462 (2)0.0214 (5)
C110.6317 (3)0.1984 (3)0.45046 (19)0.0220 (5)
C120.7429 (3)0.2985 (3)0.63433 (19)0.0228 (5)
C130.9183 (3)0.2690 (2)0.58648 (18)0.0206 (5)
C141.0771 (3)0.3830 (3)0.6102 (2)0.0254 (6)
H14A1.17180.35890.56960.038*
H14B1.13800.39850.68660.038*
H14C1.02210.46380.58960.038*
C151.0021 (4)0.1370 (3)0.6128 (2)0.0248 (6)
H15A0.89950.06570.59550.037*
H15B1.06440.14740.68880.037*
H15C1.09520.11460.57060.037*
C160.7505 (4)0.2552 (3)0.7443 (2)0.0304 (6)
H16A0.63370.27610.76670.046*
H16B0.86030.30250.79700.046*
H16C0.76220.15950.73880.046*
C170.6888 (4)0.4436 (3)0.6351 (2)0.0320 (6)
H17A0.68730.46980.56560.048*
H17B0.78230.50250.69070.048*
H17C0.56260.45020.64960.048*
N10.5857 (3)0.2135 (2)0.54865 (16)0.0248 (5)
N20.8187 (3)0.2418 (2)0.46656 (16)0.0217 (5)
N30.2243 (3)0.06280 (19)0.14902 (16)0.0206 (4)
O10.1568 (2)0.11188 (17)−0.07682 (13)0.0249 (4)
O2−0.1367 (2)0.16521 (17)0.03802 (13)0.0245 (4)
O30.4265 (2)0.1723 (2)0.56890 (14)0.0353 (5)
O40.9121 (2)0.25076 (18)0.39302 (14)0.0274 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0255 (17)0.0255 (17)0.0309 (19)−0.0021 (13)0.0044 (15)−0.0037 (14)
C10.0354 (15)0.0245 (14)0.0295 (15)0.0070 (11)0.0010 (12)0.0017 (11)
C20.0253 (13)0.0220 (13)0.0173 (13)0.0039 (10)−0.0057 (10)0.0043 (10)
C30.0297 (14)0.0208 (13)0.0232 (14)0.0009 (10)−0.0009 (11)0.0043 (10)
C40.0228 (13)0.0245 (13)0.0215 (14)0.0001 (10)−0.0047 (10)0.0090 (10)
C50.0275 (14)0.0306 (14)0.0399 (17)0.0000 (11)0.0039 (12)0.0122 (12)
C60.0186 (12)0.0260 (13)0.0220 (14)0.0034 (10)0.0049 (10)0.0061 (10)
C70.0218 (13)0.0276 (13)0.0171 (13)0.0031 (10)0.0051 (10)0.0035 (10)
C80.0196 (13)0.0308 (14)0.0223 (14)0.0033 (10)0.0045 (11)0.0037 (11)
C90.0229 (13)0.0268 (13)0.0192 (13)0.0041 (10)0.0046 (10)0.0044 (10)
C100.0213 (13)0.0240 (12)0.0184 (13)0.0009 (10)0.0033 (10)0.0042 (10)
C110.0210 (13)0.0293 (13)0.0155 (13)0.0018 (10)0.0046 (10)0.0025 (10)
C120.0204 (13)0.0301 (14)0.0162 (13)0.0044 (10)0.0004 (10)0.0032 (10)
C130.0190 (12)0.0291 (13)0.0119 (12)0.0009 (10)0.0007 (10)0.0023 (10)
C140.0231 (13)0.0284 (14)0.0233 (14)0.0013 (10)0.0030 (11)0.0033 (11)
C150.0209 (13)0.0279 (13)0.0253 (14)0.0037 (10)0.0037 (11)0.0057 (11)
C160.0259 (14)0.0444 (17)0.0200 (14)0.0032 (12)0.0030 (11)0.0062 (12)
C170.0271 (14)0.0388 (16)0.0284 (16)0.0112 (12)0.0039 (12)0.0015 (12)
N10.0158 (11)0.0388 (13)0.0188 (12)0.0004 (9)0.0032 (9)0.0036 (9)
N20.0179 (11)0.0298 (11)0.0171 (11)0.0011 (8)0.0038 (9)0.0039 (9)
N30.0222 (11)0.0214 (10)0.0184 (11)0.0028 (8)0.0049 (9)0.0036 (8)
O10.0256 (9)0.0244 (9)0.0219 (10)0.0001 (7)0.0009 (7)0.0030 (7)
O20.0238 (9)0.0245 (9)0.0230 (10)0.0043 (7)0.0005 (7)0.0037 (7)
O30.0183 (10)0.0617 (14)0.0272 (11)−0.0016 (9)0.0067 (8)0.0113 (10)
O40.0218 (9)0.0406 (11)0.0204 (10)0.0010 (8)0.0078 (8)0.0032 (8)

Geometric parameters (Å, °)

Mn1—O2i2.0151 (17)C9—N31.333 (3)
Mn1—O22.0151 (17)C9—H90.9300
Mn1—O1i2.0386 (17)C10—C111.461 (3)
Mn1—O12.0386 (17)C11—N21.339 (3)
Mn1—N3i2.178 (2)C11—N11.358 (3)
Mn1—N32.178 (2)C12—N11.503 (3)
C1—C21.509 (3)C12—C161.520 (3)
C1—H1A0.9600C12—C171.520 (3)
C1—H1B0.9600C12—C131.533 (3)
C1—H1C0.9600C13—N21.514 (3)
C2—O21.271 (3)C13—C141.513 (3)
C2—C31.388 (4)C13—C151.526 (3)
C3—C41.395 (4)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—O11.268 (3)C14—H14C0.9600
C4—C51.502 (3)C15—H15A0.9600
C5—H5A0.9600C15—H15B0.9600
C5—H5B0.9600C15—H15C0.9600
C5—H5C0.9600C16—H16A0.9600
C6—N31.342 (3)C16—H16B0.9600
C6—C71.372 (3)C16—H16C0.9600
C6—H60.9300C17—H17A0.9600
C7—C101.391 (3)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.382 (3)N1—O31.279 (3)
C8—C101.394 (3)N2—O41.279 (2)
C8—H80.9300
O2i—Mn1—O2180.00 (10)N2—C11—N1108.0 (2)
O2i—Mn1—O1i89.02 (7)N2—C11—C10127.1 (2)
O2—Mn1—O1i90.98 (7)N1—C11—C10124.8 (2)
O2i—Mn1—O190.98 (7)N1—C12—C16109.9 (2)
O2—Mn1—O189.02 (7)N1—C12—C17105.8 (2)
O1i—Mn1—O1180.00 (9)C16—C12—C17110.7 (2)
O2i—Mn1—N3i89.00 (7)N1—C12—C1399.99 (19)
O2—Mn1—N3i91.00 (7)C16—C12—C13115.7 (2)
O1i—Mn1—N3i88.10 (7)C17—C12—C13113.8 (2)
O1—Mn1—N3i91.90 (7)N2—C13—C14110.88 (19)
O2i—Mn1—N391.00 (7)N2—C13—C15105.76 (19)
O2—Mn1—N389.00 (7)C14—C13—C15110.9 (2)
O1i—Mn1—N391.90 (7)N2—C13—C1299.71 (17)
O1—Mn1—N388.10 (7)C14—C13—C12115.9 (2)
N3i—Mn1—N3180.00 (8)C15—C13—C12112.7 (2)
C2—C1—H1A109.5C13—C14—H14A109.5
C2—C1—H1B109.5C13—C14—H14B109.5
H1A—C1—H1B109.5H14A—C14—H14B109.5
C2—C1—H1C109.5C13—C14—H14C109.5
H1A—C1—H1C109.5H14A—C14—H14C109.5
H1B—C1—H1C109.5H14B—C14—H14C109.5
O2—C2—C3126.0 (2)C13—C15—H15A109.5
O2—C2—C1114.5 (2)C13—C15—H15B109.5
C3—C2—C1119.5 (2)H15A—C15—H15B109.5
C4—C3—C2125.6 (2)C13—C15—H15C109.5
C4—C3—H3117.2H15A—C15—H15C109.5
C2—C3—H3117.2H15B—C15—H15C109.5
O1—C4—C3125.0 (2)C12—C16—H16A109.5
O1—C4—C5114.8 (2)C12—C16—H16B109.5
C3—C4—C5120.1 (2)H16A—C16—H16B109.5
C4—C5—H5A109.5C12—C16—H16C109.5
C4—C5—H5B109.5H16A—C16—H16C109.5
H5A—C5—H5B109.5H16B—C16—H16C109.5
C4—C5—H5C109.5C12—C17—H17A109.5
H5A—C5—H5C109.5C12—C17—H17B109.5
H5B—C5—H5C109.5H17A—C17—H17B109.5
N3—C6—C7124.0 (2)C12—C17—H17C109.5
N3—C6—H6118.0H17A—C17—H17C109.5
C7—C6—H6118.0H17B—C17—H17C109.5
C6—C7—C10118.9 (2)O3—N1—C11127.0 (2)
C6—C7—H7120.5O3—N1—C12121.8 (2)
C10—C7—H7120.5C11—N1—C12111.0 (2)
C9—C8—C10119.1 (2)O4—N2—C11126.4 (2)
C9—C8—H8120.5O4—N2—C13121.89 (18)
C10—C8—H8120.5C11—N2—C13111.45 (18)
N3—C9—C8123.4 (2)C9—N3—C6116.9 (2)
N3—C9—H9118.3C9—N3—Mn1124.82 (16)
C8—C9—H9118.3C6—N3—Mn1118.27 (16)
C7—C10—C8117.7 (2)C4—O1—Mn1121.54 (16)
C7—C10—C11119.6 (2)C2—O2—Mn1121.01 (16)
C8—C10—C11122.7 (2)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2160).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc.122, 1391–1397.
  • Hao, L., Mu, C. & Kong, B. (2008). Acta Cryst. E64, m957. [PMC free article] [PubMed]
  • Hye, J. C. & Myunghyun, P. S. (1998). J. Am. Chem. Soc.120, 10622–10628.
  • Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tabares, L. C., Navarro, J. A. R. & Salas, J. M. (2001). J. Am. Chem. Soc.123, 383–387.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography