PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1076.
Published online 2008 July 26. doi:  10.1107/S1600536808022964
PMCID: PMC2961986

catena-Poly[{μ-cyanido-bis­[(4,4′-dimethyl-2,2′-bipyridine-κ2 N,N′)copper(I)]}-μ-cyanido-copper(I)-μ-cyanido]

Abstract

In the title compound, [Cu3(CN)3(C12H12N2)2], two 2,2′-bipyridine N,N′-chelated CuI atoms are linked by a cyanide bridge that lies about a center of inversion; the CuI atom exists in a tetra­hedral coordination geometry. This dinuclear entity is linked to another CuI atom that lies on a twofold rotation axis by another cyanide bridge, these bridges giving rise to the formation of a linear chain motif.

Related literature

Some copper(I) cyanide adducts with 2,2′-bipyridine-like ligands that adopt chain structures in which the cyanide group functions as a bridge are tris­cyano-bis­(2,2′-biquinoline)tri­cop­per (Chesnut et al., 2001 [triangle]; Dessy et al., 1985 [triangle]), tetra­kiscyano­(2,2′-biquinoline)tetra­copper (Chesnut & Zubieta, 1998 [triangle]) and bis­cyano-(4,4′-diphenyl-2,2′-bipyridine)dicopper (Chesnut et al., 2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1076-scheme1.jpg

Experimental

Crystal data

  • [Cu3(CN)3(C12H12N2)2]
  • M r = 637.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1076-efi1.jpg
  • a = 10.7196 (7) Å
  • b = 12.3700 (9) Å
  • c = 20.9182 (14) Å
  • β = 100.146 (1)°
  • V = 2730.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.34 mm−1
  • T = 295 (2) K
  • 0.30 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.540, T max = 0.705
  • 8685 measured reflections
  • 3125 independent reflections
  • 2491 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.110
  • S = 1.03
  • 3125 reflections
  • 170 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022964/rk2103sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022964/rk2103Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Shantou University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The cyanide group functions as a bridging group in a number of copper(I) adducts of 2,2'-bipyridine type of N-heterocycles. Those who crystal structure have been described include the triscyano-bis(2,2'-biquinoline)tricopper (Chesnut et al., 2001; Dessy et al., 1985), tetrakiscyano(2,2'-biquinoline)tetracopper (Chesnut & Zubieta, 1998) and biscyano-(4,4'-diphenyl-2,2'-bipyridine)dicopper (Chesnut et al., 2001).

The copper(I) cyanide adduct with 4,4'-dimethyl-2,2'-biyridine (Scheme 1, Fig. 1) adopts a similar chain motif. Two N-heterocycle-chelated copper(I) atoms are linked by a cyanide bridge that lies about a center-of-inversion; the copper(I) atom exists in a tetrahedral coordination geometry. This dinuclear entity is linked to copper(I) atom that lies on a twofold rotation axis by another cyanide bridge.

Experimental

4,4'-Dimethyl-2,2'-bipyridine (0.055 g, 0.3 mmol), cuprous cyanide (0.009 g, 0.1 mmol) and acetonitrile (8 ml) were placed in a 15-ml, teflon-lined autoclave. It was heated at 453 K for 72 hours, then was cooled to 333 K at a rate of 5 K per hour and then kept at this temperature for a further 10 hours before being cooled to room temperature. Red prisms were in 50% yield based on the N-heterocycle.

Refinement

The component atoms of the cyanide groups were each refined as a 50%:50% mixture of carbon and nitrogen. The pair of C/N atoms were restrained to the same site and also to have the same temperature factors. Hydrogen atoms were placed at calculated positions in the riding model approximation with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of a portion of the linear chain motif; probability levels are set at 50%.

Crystal data

[Cu3(CN)3(C12H12N2)2]F000 = 1288
Mr = 637.15Dx = 1.550 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2750 reflections
a = 10.7196 (7) Åθ = 2.5–27.0º
b = 12.3700 (9) ŵ = 2.34 mm1
c = 20.9182 (14) ÅT = 295 (2) K
β = 100.146 (1)ºBlock, red
V = 2730.4 (3) Å30.30 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer3125 independent reflections
Radiation source: fine-focus sealed tube2491 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 295(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.540, Tmax = 0.705k = −16→15
8685 measured reflectionsl = −16→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.110  w = 1/[σ2(Fo2) + (0.065P)2 + 0.8323P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3125 reflectionsΔρmax = 0.53 e Å3
170 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.74268 (3)0.41078 (2)0.072850 (16)0.04716 (14)
Cu20.50000.41827 (4)0.25000.05469 (16)
N10.75592 (19)0.54384 (16)0.01065 (10)0.0420 (5)
N20.92273 (18)0.47469 (15)0.11124 (9)0.0406 (4)
N30.6442 (3)0.41773 (18)0.14085 (14)0.0519 (6)0.50
N40.5915 (2)0.4184 (2)0.18400 (12)0.0502 (6)0.50
N50.7489 (2)0.28632 (17)0.01721 (11)0.0487 (6)0.50
C3'0.6442 (3)0.41773 (18)0.14085 (14)0.0519 (6)0.50
C4'0.5915 (2)0.4184 (2)0.18400 (12)0.0502 (6)0.50
C5'0.7489 (2)0.28632 (17)0.01721 (11)0.0487 (6)0.50
C10.6717 (3)0.5725 (2)−0.04135 (14)0.0531 (6)
H10.59320.5384−0.04850.064*
C20.6951 (3)0.6501 (2)−0.08494 (13)0.0562 (7)
H20.63250.6680−0.12000.067*
C30.8105 (3)0.7011 (2)−0.07670 (12)0.0493 (6)
C40.8992 (2)0.67121 (18)−0.02273 (12)0.0450 (6)
H40.97910.7030−0.01540.054*
C50.8687 (2)0.59363 (16)0.02044 (12)0.0385 (5)
C60.8409 (4)0.7858 (2)−0.12307 (15)0.0699 (9)
H6A0.81170.7623−0.16690.105*
H6B0.93090.7970−0.11640.105*
H6C0.79970.8523−0.11560.105*
C70.9594 (2)0.56084 (18)0.07973 (11)0.0391 (5)
C81.0699 (2)0.61388 (19)0.10154 (13)0.0461 (6)
H81.09100.67390.07890.055*
C91.1516 (3)0.5801 (2)0.15691 (14)0.0523 (6)
C101.1131 (3)0.4918 (2)0.18924 (14)0.0559 (7)
H101.16340.46610.22700.067*
C111.0006 (3)0.4430 (2)0.16498 (13)0.0516 (6)
H110.97660.38370.18730.062*
C121.2752 (3)0.6366 (3)0.18039 (18)0.0781 (10)
H12A1.30380.62030.22550.117*
H12B1.26350.71330.17510.117*
H12C1.33720.61250.15560.117*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0535 (2)0.0446 (2)0.0483 (2)−0.01261 (12)0.02281 (16)−0.00397 (12)
Cu20.0494 (3)0.0793 (4)0.0406 (3)0.0000.0223 (2)0.000
N10.0483 (11)0.0401 (10)0.0402 (12)−0.0070 (8)0.0149 (9)−0.0055 (8)
N20.0469 (10)0.0416 (10)0.0376 (11)−0.0031 (8)0.0193 (9)0.0007 (8)
N30.0530 (13)0.0527 (14)0.0522 (15)−0.0098 (10)0.0152 (12)−0.0068 (10)
N40.0469 (13)0.0700 (16)0.0387 (13)−0.0049 (10)0.0214 (11)−0.0049 (10)
N50.0560 (13)0.0453 (12)0.0514 (15)−0.0154 (10)0.0281 (11)−0.0066 (9)
C3'0.0530 (13)0.0527 (14)0.0522 (15)−0.0098 (10)0.0152 (12)−0.0068 (10)
C4'0.0469 (13)0.0700 (16)0.0387 (13)−0.0049 (10)0.0214 (11)−0.0049 (10)
C5'0.0560 (13)0.0453 (12)0.0514 (15)−0.0154 (10)0.0281 (11)−0.0066 (9)
C10.0539 (15)0.0559 (15)0.0491 (16)−0.0090 (12)0.0082 (13)−0.0071 (12)
C20.0655 (16)0.0599 (16)0.0415 (15)0.0020 (13)0.0047 (13)0.0003 (12)
C30.0678 (16)0.0432 (12)0.0409 (14)0.0022 (12)0.0206 (13)0.0002 (10)
C40.0525 (14)0.0423 (13)0.0451 (14)−0.0055 (10)0.0221 (11)−0.0005 (10)
C50.0457 (12)0.0370 (11)0.0365 (13)−0.0020 (9)0.0175 (10)−0.0035 (9)
C60.098 (2)0.0630 (18)0.0550 (19)0.0058 (16)0.0312 (17)0.0142 (14)
C70.0456 (13)0.0367 (11)0.0400 (13)−0.0031 (9)0.0216 (11)−0.0021 (9)
C80.0501 (14)0.0424 (12)0.0482 (15)−0.0047 (10)0.0153 (12)0.0046 (10)
C90.0506 (14)0.0537 (15)0.0530 (17)−0.0049 (11)0.0103 (12)−0.0013 (11)
C100.0554 (15)0.0640 (17)0.0473 (16)0.0013 (13)0.0066 (12)0.0101 (13)
C110.0628 (16)0.0484 (13)0.0474 (15)−0.0050 (12)0.0201 (13)0.0069 (12)
C120.0605 (18)0.080 (2)0.086 (2)−0.0172 (16)−0.0074 (17)0.0093 (19)

Geometric parameters (Å, °)

Cu1—N12.118 (2)C4—C51.395 (3)
Cu1—N22.109 (2)C4—H40.9300
Cu1—N31.917 (3)C5—C71.491 (3)
Cu1—N51.938 (2)C6—H6A0.9600
Cu2—N41.829 (2)C6—H6B0.9600
Cu2—N4i1.829 (2)C6—H6C0.9600
N1—C11.333 (3)C7—C81.361 (4)
N1—C51.340 (3)C8—C91.388 (4)
N2—C111.336 (3)C8—H80.9300
N2—C71.347 (3)C9—C101.385 (4)
N3—N41.146 (4)C9—C121.502 (4)
N5—C5'ii1.154 (4)C10—C111.364 (4)
C1—C21.377 (4)C10—H100.9300
C1—H10.9300C11—H110.9300
C2—C31.372 (4)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.392 (4)C12—H12C0.9600
C3—C61.503 (4)
N3—Cu1—N5124.25 (9)N1—C5—C4121.7 (2)
N3—Cu1—N2106.70 (9)N1—C5—C7116.1 (2)
N5—Cu1—N2113.61 (9)C4—C5—C7122.2 (2)
N3—Cu1—N1121.75 (9)C3—C6—H6A109.5
N5—Cu1—N1103.61 (9)C3—C6—H6B109.5
N2—Cu1—N177.69 (7)H6A—C6—H6B109.5
N4—Cu2—C4'i179.88 (15)C3—C6—H6C109.5
C4'i—Cu2—N4i0.00 (12)H6A—C6—H6C109.5
C1—N1—C5117.7 (2)H6B—C6—H6C109.5
C1—N1—Cu1126.79 (17)N2—C7—C8121.9 (2)
C5—N1—Cu1114.80 (16)N2—C7—C5114.8 (2)
C11—N2—C7116.8 (2)C8—C7—C5123.3 (2)
C11—N2—Cu1127.21 (16)C7—C8—C9121.3 (2)
C7—N2—Cu1115.86 (16)C7—C8—H8119.4
N4—N3—Cu1175.6 (3)C9—C8—H8119.4
N3—N4—Cu2177.1 (3)C10—C9—C8116.5 (2)
C5'ii—N5—Cu1178.3 (3)C10—C9—C12121.9 (3)
N5ii—N5—Cu1178.3 (3)C8—C9—C12121.6 (3)
N1—C1—C2123.4 (2)C11—C10—C9119.2 (3)
N1—C1—H1118.3C11—C10—H10120.4
C2—C1—H1118.3C9—C10—H10120.4
C3—C2—C1120.2 (3)N2—C11—C10124.3 (2)
C3—C2—H2119.9N2—C11—H11117.8
C1—C2—H2119.9C10—C11—H11117.8
C2—C3—C4116.8 (2)C9—C12—H12A109.5
C2—C3—C6122.2 (3)C9—C12—H12B109.5
C4—C3—C6120.9 (2)H12A—C12—H12B109.5
C3—C4—C5120.2 (2)C9—C12—H12C109.5
C3—C4—H4119.9H12A—C12—H12C109.5
C5—C4—H4119.9H12B—C12—H12C109.5
N3—Cu1—N1—C1−81.2 (2)C1—N1—C5—C7178.9 (2)
N5—Cu1—N1—C164.9 (2)Cu1—N1—C5—C7−9.9 (2)
N2—Cu1—N1—C1176.6 (2)C3—C4—C5—N11.8 (3)
N3—Cu1—N1—C5108.54 (18)C3—C4—C5—C7−178.5 (2)
N5—Cu1—N1—C5−105.30 (17)C11—N2—C7—C8−0.4 (3)
N2—Cu1—N1—C56.36 (15)Cu1—N2—C7—C8176.04 (18)
N3—Cu1—N2—C1154.7 (2)C11—N2—C7—C5−179.5 (2)
N5—Cu1—N2—C11−85.9 (2)Cu1—N2—C7—C5−3.0 (2)
N1—Cu1—N2—C11174.5 (2)N1—C5—C7—N28.7 (3)
N3—Cu1—N2—C7−121.34 (17)C4—C5—C7—N2−171.0 (2)
N5—Cu1—N2—C798.09 (17)N1—C5—C7—C8−170.4 (2)
N1—Cu1—N2—C7−1.55 (15)C4—C5—C7—C810.0 (4)
C5—N1—C1—C20.0 (4)N2—C7—C8—C91.3 (4)
Cu1—N1—C1—C2−170.0 (2)C5—C7—C8—C9−179.7 (2)
N1—C1—C2—C31.1 (4)C7—C8—C9—C10−1.5 (4)
C1—C2—C3—C4−0.7 (4)C7—C8—C9—C12178.5 (3)
C1—C2—C3—C6179.7 (3)C8—C9—C10—C111.0 (4)
C2—C3—C4—C5−0.7 (4)C12—C9—C10—C11−179.1 (3)
C6—C3—C4—C5179.0 (2)C7—N2—C11—C10−0.2 (4)
C1—N1—C5—C4−1.4 (3)Cu1—N2—C11—C10−176.2 (2)
Cu1—N1—C5—C4169.76 (17)C9—C10—C11—N2−0.1 (5)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+3/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2103).

References

  • Barbour, L. J. (2001). J. Supramol. Chem., 1, 189–191.
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Winconsin, USA.
  • Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2581–2586.
  • Chesnut, D. J. & Zubieta, J. (1998). J. Chem. Soc. Chem. Commun. pp. 1707–1708.
  • Dessy, G., Fares, V., Imperatori, P. & Morpurgo, G. O. (1985). J. Chem. Soc. Dalton Trans. pp. 1285–1288.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography