PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1075.
Published online 2008 July 26. doi:  10.1107/S1600536808023039
PMCID: PMC2961985

Bis(diallyl­benzimidazolium) tetra­bromidocuprate(II)

Abstract

The structure of the title ionic copper(II) compound, (C13H15N2)2[CuBr4], is built up of isolated 1,3-diallyl­benzimidazolium cations and [CuBr4]2− anions which are inter­connected by electrostatic inter­actions. Differences in packing of the heterocyclic cores results in a different structure compared with earlier investigated chloride and bromide analogues.

Related literature

For related literature, see: Goreshnik et al. (1999 [triangle], 2000 [triangle]); Hathaway (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1075-scheme1.jpg

Experimental

Crystal data

  • (C13H15N2)2[CuBr4]
  • M r = 781.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1075-efi1.jpg
  • a = 10.8619 (7) Å
  • b = 15.3447 (7) Å
  • c = 18.3282 (10) Å
  • β = 105.451 (2)°
  • V = 2944.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.19 mm−1
  • T = 200 K
  • 0.12 × 0.09 × 0.07 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.522, T max = 0.639
  • 24051 measured reflections
  • 6609 independent reflections
  • 4956 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.136
  • S = 1.21
  • 6609 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: CrystalClear (Rigaku, 2001 [triangle]); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and enCIFer (Allen et al., 2004 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023039/dn2367sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023039/dn2367Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Slovenian Research Agency (ARRS) and the Ukrainian Ministry for Science and Higher Education for financial support (bilateral project BI-UA/07-08-003, M/107-2007).

supplementary crystallographic information

Comment

The structure of the title compound (I) is built by isolated 1,3-diallylbenzimidazolium cations and CuBr42- anions which are interconnected by electrostatic interaction (Fig. 1). The copper(II) atom possesses a less common distorted tetrahedral coordination. The flattened tetrahedron of the CuII atom can be considered as a result of the Jahn–Teller effect similarly as it takes place in the structure of CsCuCl3 (Hathaway, 1982).

Compound I noticeably differs from earlier investigated chloride [C13H15N2]+2[CuIICl4]2- (Goreshnik et al., 1999) and chloride–bromide [C13H15N2]+2[CuCl2.58Br1.42]2- (Goreshnik et al., 2000) derivatives. Last two compounds are isostructural and crystallize, contrary to compound I, in an orthorhombic Fddd space group. The main difference between two structural types is the packing of the closest benimidazole rings. In chloride and chloride–bromide derivatives two closest heterocyclic cores are oriented in a 'head-to-tail' manner with the location of benzene ring of one organic molecule opposite the imidazole ring of another one (Fig. 2 left). The planes of the closest benzimidazole rings are slightly tilted. In compound I benzene ring of one organic moiety is oriented strictly opposite the benzene ring of another one (Fig. 2 right). Two closest benzimidazole cores appear to be strictly parallel, and the ring–ring distanse of 3.752 (9) Å indicates the presence of π–π stacking interaction.

Experimental

Compound I was synthesized from Cu(CF3COO)2H2O and 1,3-diallylbezimidazolium bromide in ethanol solution.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C ).

Figures

Fig. 1.
View of (I) (30% probability displacement ellipsoids)
Fig. 2.
Difference in a packing of heterocyclic cores in [C13H15N2]+2[CuBr4]2- and [C13H15N2]+2[CuCl4]2- compounds

Crystal data

(C13H15N2)2[CuBr4]F000 = 1532
Mr = 781.69Dx = 1.763 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 8643 reflections
a = 10.8619 (7) Åθ = 1.8–28.9º
b = 15.3447 (7) ŵ = 6.19 mm1
c = 18.3282 (10) ÅT = 200 K
β = 105.451 (2)ºChunk, black
V = 2944.4 (3) Å30.12 × 0.09 × 0.07 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometerRint = 0.052
dtprofit.ref scansθmax = 29.5º
Absorption correction: multi-scan(Blessing, 1995)θmin = 1.8º
Tmin = 0.522, Tmax = 0.639h = −15→15
24051 measured reflectionsk = −21→21
6609 independent reflectionsl = −25→25
4956 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.136  w = 1/[σ2(Fo2) + (0.0337P)2 + 3.822P] where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
6609 reflectionsΔρmax = 1.03 e Å3
316 parametersΔρmin = −0.54 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.00902 (7)0.69985 (4)0.39870 (4)0.0588 (2)
Br20.08214 (7)0.78208 (5)0.22471 (4)0.05540 (19)
Br30.28719 (7)0.88041 (5)0.39572 (4)0.0670 (2)
Br4−0.04726 (7)0.93993 (5)0.37629 (4)0.0606 (2)
Cu10.08067 (7)0.82226 (5)0.34949 (4)0.0479 (2)
N10.1331 (5)1.0593 (3)0.1875 (3)0.0506 (13)
N2−0.0731 (5)1.0430 (3)0.1659 (3)0.0450 (12)
N30.6672 (5)0.6752 (3)0.1157 (3)0.0500 (13)
N40.4599 (5)0.6754 (4)0.0790 (3)0.0596 (15)
C10.0793 (7)1.0878 (4)0.1133 (4)0.0498 (15)
C20.1342 (7)1.1211 (4)0.0586 (4)0.0595 (18)
H20.22181.12940.06790.071*
C30.0514 (8)1.1407 (4)−0.0092 (4)0.0654 (19)
H30.08411.1630−0.04730.078*
C4−0.0790 (8)1.1290 (4)−0.0241 (4)0.0633 (19)
H4−0.13061.1428−0.07190.076*
C5−0.1354 (7)1.0974 (4)0.0303 (4)0.0578 (17)
H5−0.22321.09060.02110.069*
C6−0.0509 (6)1.0766 (4)0.0994 (3)0.0472 (14)
C70.0392 (6)1.0332 (4)0.2152 (4)0.0501 (15)
H70.05071.01060.26360.060*
C8−0.1982 (6)1.0191 (4)0.1768 (4)0.0524 (15)
H8A−0.25911.06530.15730.063*
H8B−0.19081.01280.23040.063*
C9−0.2457 (7)0.9362 (4)0.1373 (4)0.0599 (17)
H9−0.20020.88550.15470.072*
C10−0.3459 (8)0.9295 (6)0.0805 (5)0.084 (3)
H10A−0.39360.97890.06180.101*
H10B−0.37020.87550.05850.101*
C110.2709 (7)1.0506 (5)0.2243 (4)0.0643 (18)
H11A0.28471.04970.27880.077*
H11B0.31591.10050.21150.077*
C120.3226 (7)0.9698 (5)0.2000 (4)0.0636 (18)
H120.29530.91670.21440.076*
C130.4048 (8)0.9693 (5)0.1592 (5)0.090 (3)
H13A0.43361.02160.14400.108*
H13B0.43450.91660.14540.108*
C140.6251 (6)0.7068 (4)0.1764 (3)0.0474 (14)
C150.6927 (7)0.7363 (4)0.2464 (4)0.0602 (18)
H150.78150.73800.26130.072*
C160.6190 (9)0.7634 (5)0.2931 (4)0.070 (2)
H160.66010.78360.34130.085*
C170.4853 (9)0.7619 (4)0.2712 (4)0.064 (2)
H170.44060.78010.30520.077*
C180.4193 (7)0.7341 (4)0.2007 (4)0.0624 (19)
H180.33050.73380.18560.075*
C190.4916 (7)0.7064 (4)0.1530 (4)0.0526 (16)
C200.5660 (6)0.6565 (4)0.0598 (3)0.0524 (15)
H200.56880.63330.01340.063*
C210.7995 (6)0.6605 (5)0.1136 (4)0.0594 (17)
H21A0.84900.71260.13150.071*
H21B0.80100.65100.06150.071*
C220.8619 (8)0.5839 (6)0.1607 (6)0.081 (2)
H220.88170.59040.21300.098*
C230.8892 (9)0.5139 (7)0.1368 (7)0.118 (4)
H23A0.87130.50430.08490.142*
H23B0.92770.47040.17050.142*
C240.3253 (8)0.6751 (6)0.0274 (4)0.086 (3)
H24A0.28500.73080.03050.103*
H24B0.32800.6664−0.02460.103*
C250.2548 (10)0.6089 (6)0.0486 (4)0.094 (3)
H250.29070.55410.06130.112*
C260.1296 (8)0.6254 (7)0.0506 (6)0.105 (3)
H26A0.09410.68030.03790.126*
H26B0.08160.58150.06470.126*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0615 (4)0.0512 (4)0.0634 (5)−0.0018 (3)0.0158 (3)0.0067 (3)
Br20.0578 (4)0.0624 (4)0.0460 (4)−0.0059 (3)0.0139 (3)−0.0070 (3)
Br30.0574 (4)0.0742 (5)0.0679 (5)−0.0087 (4)0.0143 (4)−0.0175 (4)
Br40.0731 (5)0.0568 (4)0.0580 (4)0.0202 (3)0.0283 (4)0.0101 (3)
Cu10.0519 (5)0.0441 (4)0.0485 (5)0.0020 (3)0.0150 (4)−0.0008 (3)
N10.051 (3)0.046 (3)0.056 (3)−0.003 (2)0.016 (3)−0.006 (2)
N20.048 (3)0.045 (3)0.045 (3)0.000 (2)0.019 (2)0.003 (2)
N30.049 (3)0.057 (3)0.043 (3)−0.003 (2)0.010 (2)0.001 (2)
N40.047 (3)0.090 (4)0.043 (3)−0.006 (3)0.012 (3)−0.004 (3)
C10.066 (4)0.036 (3)0.049 (4)0.001 (3)0.019 (3)−0.001 (3)
C20.069 (5)0.048 (4)0.073 (5)0.002 (3)0.040 (4)0.002 (3)
C30.087 (6)0.051 (4)0.068 (5)0.005 (4)0.037 (4)0.013 (3)
C40.092 (6)0.050 (4)0.050 (4)0.011 (4)0.022 (4)0.010 (3)
C50.065 (4)0.051 (4)0.058 (4)0.002 (3)0.017 (4)0.004 (3)
C60.062 (4)0.039 (3)0.044 (4)0.003 (3)0.018 (3)0.003 (3)
C70.060 (4)0.046 (3)0.045 (4)0.004 (3)0.016 (3)−0.001 (3)
C80.048 (4)0.062 (4)0.050 (4)0.001 (3)0.019 (3)0.006 (3)
C90.061 (4)0.052 (4)0.070 (5)−0.003 (3)0.025 (4)0.000 (3)
C100.082 (6)0.095 (7)0.081 (6)−0.023 (5)0.034 (5)−0.015 (5)
C110.061 (4)0.064 (5)0.067 (5)−0.006 (4)0.015 (4)0.000 (4)
C120.054 (4)0.055 (4)0.083 (5)−0.002 (3)0.022 (4)0.011 (4)
C130.095 (7)0.062 (5)0.132 (8)0.006 (5)0.062 (6)0.022 (5)
C140.054 (4)0.042 (3)0.046 (4)0.002 (3)0.014 (3)0.005 (3)
C150.073 (5)0.059 (4)0.045 (4)−0.008 (4)0.010 (4)−0.001 (3)
C160.106 (7)0.054 (4)0.046 (4)−0.001 (4)0.010 (4)−0.007 (3)
C170.105 (6)0.043 (4)0.052 (5)0.010 (4)0.034 (4)0.000 (3)
C180.071 (5)0.062 (4)0.060 (5)0.019 (4)0.027 (4)0.012 (3)
C190.060 (4)0.051 (4)0.046 (4)−0.001 (3)0.013 (3)0.005 (3)
C200.050 (4)0.068 (4)0.038 (3)−0.004 (3)0.009 (3)−0.006 (3)
C210.045 (4)0.065 (4)0.071 (5)−0.008 (3)0.020 (3)0.008 (3)
C220.066 (5)0.076 (6)0.116 (7)0.005 (4)0.048 (5)0.010 (5)
C230.070 (6)0.089 (7)0.184 (11)−0.007 (6)0.013 (7)−0.002 (7)
C240.089 (7)0.108 (7)0.064 (5)−0.010 (5)0.025 (5)−0.002 (5)
C250.120 (8)0.082 (6)0.067 (6)−0.016 (6)0.004 (5)−0.015 (5)
C260.056 (5)0.120 (8)0.145 (9)−0.019 (5)0.039 (6)−0.031 (7)

Geometric parameters (Å, °)

Br1—Cu12.3999 (10)C10—H10B0.9300
Br2—Cu12.3728 (9)C11—C121.477 (9)
Br3—Cu12.3524 (11)C11—H11A0.9700
Br4—Cu12.4074 (10)C11—H11B0.9700
N1—C71.317 (8)C12—C131.308 (10)
N1—C11.400 (8)C12—H120.9300
N1—C111.474 (8)C13—H13A0.9300
N2—C71.319 (8)C13—H13B0.9300
N2—C61.402 (7)C14—C151.375 (9)
N2—C81.472 (7)C14—C191.399 (9)
N3—C201.319 (7)C15—C161.382 (10)
N3—C141.397 (8)C15—H150.9300
N3—C211.465 (8)C16—C171.400 (11)
N4—C201.323 (8)C16—H160.9300
N4—C191.392 (8)C17—C181.368 (10)
N4—C241.515 (10)C17—H170.9300
C1—C61.379 (9)C18—C191.389 (9)
C1—C21.392 (8)C18—H180.9300
C2—C31.360 (10)C20—H200.9300
C2—H20.9300C21—C221.510 (10)
C3—C41.381 (10)C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C4—C51.389 (9)C22—C231.226 (12)
C4—H40.9300C22—H220.9300
C5—C61.388 (9)C23—H23A0.9300
C5—H50.9300C23—H23B0.9300
C7—H70.9300C24—C251.388 (11)
C8—C91.486 (9)C24—H24A0.9700
C8—H8A0.9700C24—H24B0.9700
C8—H8B0.9700C25—C261.393 (12)
C9—C101.294 (10)C25—H250.9300
C9—H90.9300C26—H26A0.9300
C10—H10A0.9300C26—H26B0.9300
Br3—Cu1—Br2101.25 (4)N1—C11—H11B109.4
Br3—Cu1—Br1127.24 (4)C12—C11—H11B109.4
Br2—Cu1—Br1105.46 (4)H11A—C11—H11B108.0
Br3—Cu1—Br4100.89 (4)C13—C12—C11123.4 (7)
Br2—Cu1—Br4122.96 (4)C13—C12—H12118.3
Br1—Cu1—Br4101.31 (4)C11—C12—H12118.3
C7—N1—C1107.7 (5)C12—C13—H13A120.0
C7—N1—C11126.3 (6)C12—C13—H13B120.0
C1—N1—C11125.7 (6)H13A—C13—H13B120.0
C7—N2—C6107.2 (5)C15—C14—N3130.6 (6)
C7—N2—C8126.7 (5)C15—C14—C19122.7 (6)
C6—N2—C8126.1 (5)N3—C14—C19106.7 (5)
C20—N3—C14108.2 (5)C14—C15—C16115.1 (7)
C20—N3—C21124.5 (5)C14—C15—H15122.5
C14—N3—C21127.3 (5)C16—C15—H15122.5
C20—N4—C19109.1 (6)C15—C16—C17123.0 (7)
C20—N4—C24126.7 (6)C15—C16—H16118.5
C19—N4—C24123.8 (6)C17—C16—H16118.5
C6—C1—C2121.8 (6)C18—C17—C16121.3 (7)
C6—C1—N1106.5 (5)C18—C17—H17119.4
C2—C1—N1131.7 (7)C16—C17—H17119.4
C3—C2—C1115.7 (7)C17—C18—C19116.6 (7)
C3—C2—H2122.2C17—C18—H18121.7
C1—C2—H2122.2C19—C18—H18121.7
C2—C3—C4123.1 (7)C18—C19—N4133.2 (7)
C2—C3—H3118.4C18—C19—C14121.3 (6)
C4—C3—H3118.4N4—C19—C14105.5 (6)
C3—C4—C5121.9 (7)N3—C20—N4110.5 (6)
C3—C4—H4119.1N3—C20—H20124.7
C5—C4—H4119.1N4—C20—H20124.7
C6—C5—C4115.1 (7)N3—C21—C22113.5 (5)
C6—C5—H5122.4N3—C21—H21A108.9
C4—C5—H5122.4C22—C21—H21A108.9
C1—C6—C5122.4 (6)N3—C21—H21B108.9
C1—C6—N2106.9 (5)C22—C21—H21B108.9
C5—C6—N2130.7 (6)H21A—C21—H21B107.7
N1—C7—N2111.8 (6)C23—C22—C21126.3 (10)
N1—C7—H7124.1C23—C22—H22116.8
N2—C7—H7124.1C21—C22—H22116.8
N2—C8—C9111.1 (5)C22—C23—H23A120.0
N2—C8—H8A109.4C22—C23—H23B120.0
C9—C8—H8A109.4H23A—C23—H23B120.0
N2—C8—H8B109.4C25—C24—N4109.9 (8)
C9—C8—H8B109.4C25—C24—H24A109.7
H8A—C8—H8B108.0N4—C24—H24A109.7
C10—C9—C8124.5 (7)C25—C24—H24B109.7
C10—C9—H9117.7N4—C24—H24B109.7
C8—C9—H9117.7H24A—C24—H24B108.2
C9—C10—H10A120.0C24—C25—C26119.4 (10)
C9—C10—H10B120.0C24—C25—H25120.3
H10A—C10—H10B120.0C26—C25—H25120.3
N1—C11—C12111.1 (6)C25—C26—H26A120.0
N1—C11—H11A109.4C25—C26—H26B120.0
C12—C11—H11A109.4H26A—C26—H26B120.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2367).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Goreshnik, E. A., Davydov, V. N., Pavlyuk, A. V. & Mys’kiv, M. G. (1999). Russ. J. Coord. Chem.25, 732–737.
  • Goreshnik, E. A., Schollmeyer, D., Mys’kiv, M. G. & Pavl’uk, O. V. (2000). Z. Anorg. Allg. Chem.626, 1016–1019.
  • Hathaway, B. J. (1982). Coord. Chem. Rev.41, 423–487.
  • Rigaku (2001). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography