PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1074.
Published online 2008 July 26. doi:  10.1107/S1600536808023131
PMCID: PMC2961984

Poly[[diaqua­bis(μ3-maleato-κ4 O 1:O 1′,O 4:O4′)dicopper(II)] trihydrate]

Abstract

In the title compound, {[Cu2(C4H2O4)2(H2O)2]·3H2O}n, CuII ions with square-pyramidal coordination are bridged by exo­tri­dentate maleate dianions into [Cu2(maleate)2(H2O)2]n layers coincident with the bc crystal plane. The inter­lamellar regions contain hydrogen-bonded cyclic water hexa­mers which facilitate layer stacking into a pseudo-three-dimensional crystal structure. The water hexamers themselves are formed by the operation of crystallographic inversion centers on sets of three crystallographically distinct water molecules of hydration.

Related literature

For recent dpa coordination polymers, see: Brown et al. (2008 [triangle]). For the preparation of dpa, see: Zapf et al. (1998 [triangle]). For the determination of the τ factor for five-coordinate geometries, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1074-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C4H2O4)2(H2O)2]·3H2O
  • M r = 445.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1074-efi1.jpg
  • a = 8.8835 (14) Å
  • b = 8.7700 (14) Å
  • c = 18.814 (3) Å
  • β = 97.994 (3)°
  • V = 1451.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.00 mm−1
  • T = 173 (2) K
  • 0.30 × 0.28 × 0.05 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.470, T max = 0.860
  • 9585 measured reflections
  • 2643 independent reflections
  • 2331 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.055
  • S = 1.03
  • 2643 reflections
  • 238 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: COSMO (Bruker, 2006 [triangle]); cell refinement: APEX2 (Bruker, 2006 [triangle]); data reduction: SAINT (Bruker, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023131/sj2520sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023131/sj2520Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

supplementary crystallographic information

Comment

Recently our group has been investigating metal dicarboxylate coordination polymers with 4,4'-dipyridylamine (dpa) co-ligands (Brown et al., 2008). In an attempt to prepare a copper maleate/dpa dual-ligand coordination polymer, blue plates of the title compound were obtained. The asymmetric unit (Fig. 1) of the title compound contains two CuII ions, two maleate ligands and two aqua ligands along with three water molecules of crystallization. Each crystallographically distinct CuII ion manifests square pyramidal [CuO5] coordination with τ factors (Addison et al., 1984) of 0.045 and 0.025 for Cu1 and Cu2, respectively.

Each Cu1 atom is connected to two Cu2 atoms by a exotridentate maleate ligand. In turn, each Cu2 atom is connected to two Cu1 atoms by a crystallographically distinct exotridentate maleate ligand. In this manner [Cu2(maleate)2(H2O)2]n layers are constructed, coincident with the bc crystal planes (Fig. 2). The Cu atoms describe a (4,4) grid with Cu···Cu distances around the grid perimeter of 4.925 (1), 4.874 (1), 4.902 (1) and 4.835 (1) Å. The through-space Cu···Cu distances across the two different types of grid spaces measure 6.338 (1) and 6.261 (1) Å, and 5.390 and 7.094 Å.

Adjacent [Cu2(maleate)2(H2O)2]n layers stack in an ABAB pattern to construct the three-dimensional crystal structure (Fig. 3) by means of O—H···O hydrogen bonding patterns between bound and unligated water molecules of crystallization. The unligated water molecules situated between the [Cu2(maleate)2(H2O)2]n layers aggregate into pseudo co-planar cyclic hexamers by action of the crystallographic inversion centers on sets of three crystallographically distinct water molecules of hydration (Fig. 4).

Experimental

Copper nitrate trihydrate and maleic acid were obtained commercially. 4,4'-dipyridylamine (dpa) was prepared via a published procedure (Zapf et al., 1998). Copper nitrate trihydrate (17 mg, 0.07 mmol) and maleic acid (9 mg, 0.08 mmol) were dissolved in 1.5 ml water in a glass vial. A 0.75 ml aliquot of a 1:1 water:ethanol mixture was then added, followed by 1.5 ml of an ethanolic solution of dpa (32 mg, 0.19 mmol). Blue plates of the title compound deposited after standing at 25 °C for one week.

Figures

Fig. 1.
Asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms have been omitted. Color codes: blue Cu, red O within maleate moieties, orange O within water molecules, black C.
Fig. 2.
A single coordination polymer layer in the title compound, viewed down the c crystal direction.
Fig. 3.
Packing diagram illustrating the ABAB layer stacking pattern, which forms the 3-D crystal structure of the title compound through hydrogen bonding between ligated and unligated water molecules.
Fig. 4.
A single pseudo-planar cyclic water molecule hexamer in the title compound.

Crystal data

[Cu2(C4H2O4)(H2O)2]·3H2OF000 = 896
Mr = 445.27Dx = 2.038 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 8.8835 (14) ÅCell parameters from 9585 reflections
b = 8.7700 (14) Åθ = 2.2–25.3º
c = 18.814 (3) ŵ = 3.00 mm1
β = 97.994 (3)ºT = 173 (2) K
V = 1451.5 (4) Å3Plate, blue
Z = 40.30 × 0.28 × 0.05 mm

Data collection

Bruker APEXII diffractometer2643 independent reflections
Radiation source: fine-focus sealed tube2331 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 173(2) Kθmax = 25.3º
ω/ψ scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −7→10
Tmin = 0.471, Tmax = 0.860k = −10→10
9585 measured reflectionsl = −22→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055  w = 1/[σ2(Fo2) + (0.0212P)2 + 1.6998P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2643 reflectionsΔρmax = 0.31 e Å3
238 parametersΔρmin = −0.31 e Å3
15 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu11.01597 (3)0.64409 (3)0.197428 (15)0.01156 (9)
Cu20.45106 (3)0.07186 (3)0.195099 (15)0.01174 (9)
O10.72160 (19)0.60380 (19)0.25258 (8)0.0151 (4)
O1W0.8228 (2)0.4259 (2)0.00615 (10)0.0233 (4)
H1WA0.886 (3)0.433 (3)0.0464 (12)0.028*
H1WB0.746 (2)0.374 (3)0.0165 (14)0.028*
O20.80468 (19)0.6770 (2)0.15230 (9)0.0156 (4)
O2W0.5879 (2)0.2061 (2)0.01524 (10)0.0225 (4)
H2WA0.605 (3)0.157 (3)0.0552 (11)0.027*
H2WB0.495 (2)0.233 (3)0.0091 (14)0.027*
O30.4171 (2)0.27085 (19)0.14892 (9)0.0164 (4)
O3W0.2668 (2)0.2526 (2)−0.00371 (10)0.0236 (4)
H3WA0.238 (3)0.258 (3)−0.0498 (9)0.028*
H3WB0.242 (3)0.338 (2)0.0134 (13)0.028*
O40.5053 (2)0.38423 (19)0.25143 (9)0.0150 (4)
O51.0151 (2)0.44986 (19)0.14409 (9)0.0152 (4)
O60.9918 (2)0.32879 (19)0.24548 (9)0.0148 (4)
O70.63415 (19)0.0476 (2)0.14736 (9)0.0152 (4)
O80.78378 (19)0.09818 (19)0.24870 (9)0.0151 (4)
O91.0870 (2)0.7605 (2)0.10332 (9)0.0191 (4)
H9A1.103 (3)0.701 (3)0.0691 (12)0.023*
H9B1.149 (3)0.835 (2)0.1052 (14)0.023*
O100.3104 (2)−0.0132 (2)0.08656 (9)0.0162 (4)
H10A0.355 (3)−0.071 (2)0.0582 (13)0.019*
H10B0.280 (3)0.066 (2)0.0636 (13)0.019*
C10.6980 (3)0.6406 (3)0.18741 (13)0.0132 (5)
C20.5430 (3)0.6438 (3)0.14606 (13)0.0129 (5)
H20.51620.73170.11760.016*
C30.4383 (3)0.5354 (3)0.14503 (13)0.0140 (5)
H30.34370.55330.11600.017*
C40.4550 (3)0.3888 (3)0.18500 (13)0.0143 (5)
C51.0001 (3)0.3283 (3)0.17929 (13)0.0131 (5)
C60.9934 (3)0.1841 (3)0.13696 (13)0.0135 (5)
H61.06820.17030.10600.016*
C70.8919 (3)0.0730 (3)0.13873 (13)0.0142 (5)
H70.9019−0.01400.10970.017*
C80.7639 (3)0.0732 (3)0.18235 (13)0.0133 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01167 (17)0.01221 (16)0.01043 (16)−0.00015 (13)0.00021 (12)−0.00049 (12)
Cu20.01275 (18)0.01194 (16)0.01041 (16)−0.00027 (13)0.00118 (12)−0.00011 (12)
O10.0139 (10)0.0193 (9)0.0121 (9)−0.0001 (8)0.0017 (7)0.0033 (7)
O1W0.0287 (12)0.0259 (11)0.0142 (10)−0.0018 (9)−0.0006 (8)0.0005 (9)
O20.0113 (9)0.0225 (10)0.0129 (9)−0.0018 (8)0.0013 (7)0.0026 (7)
O2W0.0208 (11)0.0305 (11)0.0160 (10)0.0059 (9)0.0017 (8)0.0050 (9)
O30.0251 (11)0.0108 (9)0.0127 (9)−0.0018 (8)0.0007 (7)−0.0023 (7)
O3W0.0308 (12)0.0228 (10)0.0156 (10)0.0031 (9)−0.0026 (9)−0.0006 (8)
O40.0192 (10)0.0127 (9)0.0125 (9)−0.0007 (8)0.0004 (7)0.0007 (7)
O50.0186 (10)0.0116 (9)0.0148 (9)−0.0017 (8)−0.0002 (7)0.0018 (7)
O60.0191 (10)0.0121 (9)0.0133 (9)−0.0004 (7)0.0024 (7)0.0009 (7)
O70.0086 (9)0.0219 (10)0.0143 (9)−0.0009 (8)−0.0008 (7)0.0002 (8)
O80.0127 (10)0.0190 (9)0.0136 (9)−0.0008 (8)0.0013 (7)−0.0008 (7)
O90.0230 (11)0.0158 (10)0.0203 (10)−0.0052 (8)0.0096 (8)−0.0013 (8)
O100.0181 (10)0.0148 (10)0.0160 (10)0.0018 (8)0.0031 (8)−0.0004 (8)
C10.0158 (14)0.0088 (12)0.0149 (13)0.0013 (11)0.0019 (11)−0.0024 (10)
C20.0149 (14)0.0131 (13)0.0108 (12)0.0026 (11)0.0018 (10)0.0013 (10)
C30.0141 (14)0.0157 (13)0.0114 (12)0.0058 (11)−0.0005 (10)−0.0007 (10)
C40.0089 (13)0.0168 (13)0.0180 (14)0.0003 (11)0.0050 (10)0.0002 (11)
C50.0075 (13)0.0148 (13)0.0162 (14)0.0011 (10)−0.0013 (10)−0.0003 (11)
C60.0124 (13)0.0133 (13)0.0156 (13)0.0034 (11)0.0046 (10)0.0009 (10)
C70.0159 (14)0.0122 (12)0.0144 (13)0.0045 (11)0.0021 (10)−0.0002 (10)
C80.0167 (14)0.0074 (12)0.0157 (13)0.0017 (11)0.0018 (11)0.0012 (10)

Geometric parameters (Å, °)

Cu1—O6i1.9501 (17)O4—Cu2iii1.9395 (17)
Cu1—O8i1.9628 (17)O5—C51.272 (3)
Cu1—O21.9708 (17)O6—C51.258 (3)
Cu1—O51.9765 (17)O6—Cu1iv1.9501 (17)
Cu1—O92.2101 (17)O7—C81.265 (3)
Cu2—O4ii1.9395 (17)O8—C81.255 (3)
Cu2—O31.9541 (17)O8—Cu1iv1.9627 (17)
Cu2—O1ii1.9544 (17)O9—H9A0.853 (16)
Cu2—O71.9757 (17)O9—H9B0.851 (16)
Cu2—O102.3618 (18)O10—H10A0.867 (16)
O1—C11.257 (3)O10—H10B0.846 (16)
O1—Cu2iii1.9544 (17)C1—C21.485 (3)
O1W—H1WA0.878 (16)C2—C31.328 (4)
O1W—H1WB0.864 (16)C2—H20.9500
O2—C11.269 (3)C3—C41.487 (3)
O2W—H2WA0.861 (16)C3—H30.9500
O2W—H2WB0.851 (16)C5—C61.492 (3)
O3—C41.257 (3)C6—C71.331 (4)
O3W—H3WA0.871 (16)C6—H60.9500
O3W—H3WB0.857 (16)C7—C81.492 (3)
O4—C41.268 (3)C7—H70.9500
O6i—Cu1—O8i89.13 (7)Cu1—O9—H9A114.8 (18)
O6i—Cu1—O290.64 (7)Cu1—O9—H9B125.1 (18)
O8i—Cu1—O2173.22 (7)H9A—O9—H9B109 (2)
O6i—Cu1—O5176.01 (7)Cu2—O10—H10A118.9 (19)
O8i—Cu1—O591.41 (7)Cu2—O10—H10B105.9 (18)
O2—Cu1—O588.35 (7)H10A—O10—H10B108 (2)
O6i—Cu1—O995.37 (7)O1—C1—O2122.5 (2)
O8i—Cu1—O999.75 (7)O1—C1—C2122.2 (2)
O2—Cu1—O987.02 (7)O2—C1—C2115.3 (2)
O5—Cu1—O988.44 (7)C3—C2—C1126.2 (2)
O4ii—Cu2—O3174.68 (7)C3—C2—H2116.9
O4ii—Cu2—O1ii88.55 (7)C1—C2—H2116.9
O3—Cu2—O1ii90.71 (7)C2—C3—C4126.3 (2)
O4ii—Cu2—O791.53 (7)C2—C3—H3116.9
O3—Cu2—O788.85 (7)C4—C3—H3116.9
O1ii—Cu2—O7176.09 (7)O3—C4—O4122.5 (2)
O4ii—Cu2—O10102.95 (7)O3—C4—C3116.0 (2)
O3—Cu2—O1082.37 (7)O4—C4—C3121.5 (2)
O1ii—Cu2—O1097.06 (7)O6—C5—O5122.5 (2)
O7—Cu2—O1086.73 (7)O6—C5—C6121.9 (2)
C1—O1—Cu2iii119.48 (16)O5—C5—C6115.6 (2)
H1WA—O1W—H1WB106 (2)C7—C6—C5125.7 (2)
C1—O2—Cu1118.31 (16)C7—C6—H6117.1
H2WA—O2W—H2WB108 (2)C5—C6—H6117.1
C4—O3—Cu2118.78 (16)C6—C7—C8125.7 (2)
H3WA—O3W—H3WB106 (2)C6—C7—H7117.1
C4—O4—Cu2iii120.15 (16)C8—C7—H7117.1
C5—O5—Cu1116.82 (16)O8—C8—O7122.7 (2)
C5—O6—Cu1iv123.65 (16)O8—C8—C7122.3 (2)
C8—O7—Cu2119.51 (16)O7—C8—C7115.0 (2)
C8—O8—Cu1iv122.77 (16)
O6i—Cu1—O2—C1−78.93 (18)O2—C1—C2—C3132.4 (3)
O8i—Cu1—O2—C19.1 (7)C1—C2—C3—C4−0.1 (4)
O5—Cu1—O2—C197.21 (18)Cu2—O3—C4—O4−4.7 (3)
O9—Cu1—O2—C1−174.27 (18)Cu2—O3—C4—C3174.94 (16)
O4ii—Cu2—O3—C4−6.9 (9)Cu2iii—O4—C4—O3−175.98 (18)
O1ii—Cu2—O3—C475.07 (18)Cu2iii—O4—C4—C34.4 (3)
O7—Cu2—O3—C4−101.05 (18)C2—C3—C4—O3−130.6 (3)
O10—Cu2—O3—C4172.09 (19)C2—C3—C4—O449.0 (4)
O6i—Cu1—O5—C5−27.4 (11)Cu1iv—O6—C5—O5−175.24 (17)
O8i—Cu1—O5—C570.43 (17)Cu1iv—O6—C5—C64.5 (3)
O2—Cu1—O5—C5−102.78 (17)Cu1—O5—C5—O6−2.6 (3)
O9—Cu1—O5—C5170.15 (18)Cu1—O5—C5—C6177.60 (16)
O4ii—Cu2—O7—C8−74.33 (18)O6—C5—C6—C747.7 (4)
O3—Cu2—O7—C8100.36 (18)O5—C5—C6—C7−132.5 (3)
O1ii—Cu2—O7—C816.7 (11)C5—C6—C7—C81.2 (4)
O10—Cu2—O7—C8−177.22 (18)Cu1iv—O8—C8—O7−178.04 (17)
Cu2iii—O1—C1—O2173.13 (17)Cu1iv—O8—C8—C71.3 (3)
Cu2iii—O1—C1—C2−7.1 (3)Cu2—O7—C8—O87.6 (3)
Cu1—O2—C1—O19.6 (3)Cu2—O7—C8—C7−171.73 (15)
Cu1—O2—C1—C2−170.14 (16)C6—C7—C8—O8−52.5 (4)
O1—C1—C2—C3−47.3 (4)C6—C7—C8—O7126.8 (3)

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O50.878 (16)2.034 (17)2.910 (3)175 (3)
O1W—H1WB···O2W0.864 (16)2.034 (18)2.863 (3)161 (3)
O2W—H2WA···O70.861 (16)1.967 (17)2.827 (3)177 (3)
O2W—H2WB···O3W0.851 (16)2.014 (18)2.854 (3)169 (3)
O3W—H3WA···O2v0.871 (16)1.995 (19)2.847 (2)166 (3)
O3W—H3WB···O1Wv0.857 (16)2.17 (2)2.928 (3)148 (2)
O9—H9A···O1Wvi0.853 (16)1.987 (18)2.831 (3)170 (3)
O9—H9B···O10vii0.851 (16)2.023 (19)2.855 (3)165 (2)
O10—H10A···O2Wviii0.867 (16)1.943 (17)2.797 (3)168 (3)
O10—H10B···O3W0.846 (16)2.059 (18)2.879 (3)163 (2)

Symmetry codes: (v) −x+1, −y+1, −z; (vi) −x+2, −y+1, −z; (vii) x+1, y+1, z; (viii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2520).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Brown, K. A., Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2008). CrystEngComm, 10, 846–855.
  • Bruker (2006). COSMO, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Palmer, D. (2007). CrystalMaker CrystalMaker Software Ltd, Bicester, Oxfordshire, England.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. III & Zubieta, J. (1998). Inorg. Chem.37, 3411–3414.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography