PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1068.
Published online 2008 July 26. doi:  10.1107/S1600536808022939
PMCID: PMC2961979

cis-Aqua­bis(2,4-dichloro-6-formyl­phenolato-κ2 O,O′)(N,N-dimethyl­formamide-κO)nickel(II)

Abstract

In the title compound, [Ni(C7H3Cl2O2)2(C3H7NO)(H2O)], the NiII ion is coordinated by four O atoms from two bidentate 2,4-dichloro-6-formyl­phenolate ligands, one O atom from a water ligand and one O atom from a dimethyl­formamide ligand in a slightly distorted octa­hedral environment. In the crystal structure, centrosymmetric dimers are formed though O—H(...)O and O—H(...)Cl hydrogen bonds; π–π stacking inter­actions, with a centroid–centroid distance of 3.796 (2) Å, are also found.

Related literature

For related literature, see: Cohen et al. (1964 [triangle]); Desiraju (1989 [triangle]); Mathews & Manohar (1991 [triangle]); Zaman et al. (2004 [triangle]); Zhang et al. (2007 [triangle]); Zordan et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1068-scheme1.jpg

Experimental

Crystal data

  • [Ni(C7H3Cl2O2)2(C3H7NO)(H2O)]
  • M r = 529.81
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1068-efi1.jpg
  • a = 10.404 (2) Å
  • b = 9.6130 (19) Å
  • c = 22.161 (4) Å
  • β = 92.44 (3)°
  • V = 2214.4 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.39 mm−1
  • T = 293 (2) K
  • 0.48 × 0.40 × 0.35 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.555, T max = 0.642
  • 10765 measured reflections
  • 3969 independent reflections
  • 3010 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.111
  • S = 1.07
  • 3969 reflections
  • 266 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022939/lh2644sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022939/lh2644Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Natural Science Foundation of Guangxi Province, China (grant No. 0832085).

supplementary crystallographic information

Comment

Halogens have a ubiquitous presence in both inorganic and organic chemistry. Schiff bases of chloro substituents on aromatic groups have aroused increasing interest in recent years because these halogenated compounds are an attractive target for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in forming intermolecular interactions (Cohen et al., 1964; Zordan et al., 2005; Desiraju, 1989; Zaman et al., 2004; Zhang et al., 2007). The title compound, (I), contains the dichloride ligand 3,5-Dichloro-2-hydroxy-benzaldehyde, with two Cl atoms accessible at the periphery of each ligand.

In the molecular structure of (I), the NiII ion is coordinated by four O atoms from two bidentate 3,5-Dichloro-2-hydroxy-benzaldehyde ligands, one O atom from a H2O ligand and one O atom from a N,N'-dimethylformamide ligand forming a slightly distorted octahedral geometry (Fig. 1). In the crystal structure O—H···O and O—H···Cl hydrogen bonds (see Table 2) result in the formation of a centrosymmetric dimer (Fig. 2). Within the dimer, there are π–π stacking interactions between the C1–C6 and C8–C13(-x, 2-y, 1-z) rings with centroid···centroid distance of 3.796 (2) Å and interplanar distance of 3.59 Å giving an offset angle of 3.5°. In the crystal structure, dimers are further linked through weak intermolecular C—H···O hydrogen bonds (Fig. 3) (C5—H5A···O4ii, 3.454 Å, symmetry code: (ii) 1 + x, 2 - y, 1 + z).

Experimental

A ethanol solution (30 ml) containing 3,5-Dichloro-2-hydroxy-benzaldehyde (0.191 g, 1 mmol) was dropwise added to an aqueous solution containing amino-methanesulfonic acid (0.111 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) with stirred during 10 min. After stirring for 1 h, an aqueous solution of Nickel chloride (0.237 g, 1 mmol) was added to the resulting solution and stirred for 2 h. The green solid compound was separated out and dissolved by N,N-Dimethylformamide, then the green solution was filtrated. After 10 days, green crystals were produced from the filtrate (yield: 65.3%, based on Ni).

Refinement

H atoms were positioned geometrically and were treated as riding atoms, with C—H distances of 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C), and with and O—H distance of 0.82 Å and Uiso(H) = 1.5Ueq(O) for H6A. Atom H6B was refined independently with an isotropic displacement parameter.

Figures

Fig. 1.
A view of (I), showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted.
Fig. 2.
The dimer of (I), Dashed lines indicate hydrogen bonds.
Fig. 3.
1-D chain of (I), Dashed lines indicate hydrogen bonds.

Crystal data

[Ni(C7H3Cl2O2)2(C3H7N1O1)(H2O1)]F000 = 1072
Mr = 529.81Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3969 reflections
a = 10.404 (2) Åθ = 1.8–25.2º
b = 9.6130 (19) ŵ = 1.39 mm1
c = 22.161 (4) ÅT = 293 (2) K
β = 92.44 (3)ºBlock, green
V = 2214.4 (8) Å30.48 × 0.40 × 0.35 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3969 independent reflections
Radiation source: fine-focus sealed tube3010 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
Detector resolution: 0 pixels mm-1θmax = 25.2º
T = 293(2) Kθmin = 1.8º
ω scansh = −12→12
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −11→11
Tmin = 0.555, Tmax = 0.642l = −23→26
10765 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111  w = 1/[σ2(Fo2) + (0.0455P)2 + 2.189P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3969 reflectionsΔρmax = 0.59 e Å3
266 parametersΔρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.20449 (4)0.95403 (5)0.46317 (2)0.03298 (15)
Cl3−0.19959 (10)0.74563 (12)0.37793 (5)0.0551 (3)
Cl10.04788 (11)0.62415 (13)0.61561 (5)0.0620 (3)
Cl4−0.17775 (12)1.10954 (17)0.18744 (5)0.0754 (4)
Cl20.48052 (13)0.70149 (19)0.75310 (6)0.0915 (5)
O20.3577 (2)1.0446 (3)0.51032 (11)0.0395 (6)
O10.1544 (2)0.8520 (3)0.53947 (10)0.0363 (6)
O40.2662 (2)1.0551 (3)0.38720 (11)0.0439 (7)
O60.1041 (2)1.1430 (3)0.48293 (13)0.0384 (6)
H6A0.02721.13320.47430.058*
O30.0510 (2)0.8740 (3)0.41437 (10)0.0374 (6)
O50.3235 (2)0.7792 (3)0.44247 (12)0.0437 (7)
C10.2302 (3)0.8212 (4)0.58538 (15)0.0335 (8)
C70.4025 (3)1.0013 (4)0.55949 (17)0.0393 (9)
H7A0.47751.04440.57420.047*
C80.0074 (3)0.9226 (4)0.36312 (16)0.0335 (8)
C9−0.1159 (3)0.8770 (4)0.33844 (16)0.0381 (9)
C50.4263 (4)0.8523 (5)0.64989 (17)0.0485 (11)
H5A0.50370.89810.65840.058*
C11−0.1049 (4)1.0351 (5)0.25254 (17)0.0491 (11)
C40.3865 (4)0.7480 (5)0.68905 (18)0.0536 (12)
C130.0725 (4)1.0237 (4)0.32556 (16)0.0405 (9)
C120.0161 (4)1.0781 (5)0.27125 (17)0.0491 (11)
H12A0.06041.14220.24860.059*
C60.3515 (3)0.8893 (4)0.59776 (16)0.0363 (9)
C30.2688 (4)0.6781 (5)0.67818 (19)0.0531 (11)
H3A0.24230.60930.70440.064*
C140.2000 (4)1.0767 (4)0.34105 (18)0.0456 (10)
H14A0.23601.13410.31250.055*
C10−0.1696 (4)0.9316 (4)0.28593 (17)0.0450 (10)
H10A−0.25010.90050.27190.054*
C20.1946 (4)0.7137 (4)0.62829 (18)0.0424 (9)
N10.3665 (4)0.5364 (4)0.43658 (16)0.0520 (9)
C150.2951 (4)0.6490 (5)0.45053 (17)0.0454 (10)
H15A0.21690.63100.46780.054*
C160.4864 (5)0.5594 (6)0.4064 (3)0.0785 (16)
H16A0.50390.65740.40490.118*
H16B0.47870.52300.36610.118*
H16C0.55540.51310.42840.118*
C170.3215 (7)0.3854 (5)0.4433 (3)0.102 (2)
H17A0.24170.38400.46350.152*
H17B0.38520.33390.46660.152*
H17C0.30930.34400.40410.152*
H6B0.098 (4)1.144 (5)0.5204 (19)0.053 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0240 (2)0.0404 (3)0.0343 (3)−0.0019 (2)−0.00076 (18)0.0032 (2)
Cl30.0426 (6)0.0615 (7)0.0608 (7)−0.0183 (5)−0.0015 (5)−0.0011 (5)
Cl10.0498 (6)0.0627 (8)0.0729 (8)−0.0140 (6)−0.0032 (5)0.0246 (6)
Cl40.0634 (8)0.1139 (12)0.0473 (7)0.0148 (7)−0.0164 (6)0.0139 (7)
Cl20.0638 (8)0.1517 (15)0.0571 (8)0.0273 (9)−0.0192 (6)0.0263 (8)
O20.0269 (13)0.0485 (16)0.0427 (15)−0.0026 (12)−0.0017 (11)0.0023 (12)
O10.0250 (12)0.0498 (16)0.0338 (13)−0.0039 (11)−0.0017 (10)0.0079 (12)
O40.0331 (14)0.0597 (18)0.0389 (15)−0.0096 (13)0.0006 (12)0.0086 (13)
O60.0254 (13)0.0477 (17)0.0420 (16)0.0006 (11)0.0006 (11)0.0018 (13)
O30.0291 (13)0.0466 (16)0.0362 (14)−0.0065 (11)−0.0026 (11)0.0037 (12)
O50.0376 (15)0.0380 (16)0.0558 (17)0.0015 (12)0.0049 (12)−0.0017 (13)
C10.0301 (19)0.038 (2)0.0329 (19)0.0057 (16)0.0028 (15)−0.0011 (16)
C70.0231 (17)0.049 (2)0.046 (2)−0.0035 (17)−0.0017 (16)−0.0043 (19)
C80.0279 (18)0.038 (2)0.034 (2)0.0025 (16)0.0010 (15)−0.0049 (16)
C90.033 (2)0.041 (2)0.040 (2)−0.0006 (17)0.0021 (16)−0.0042 (17)
C50.031 (2)0.071 (3)0.043 (2)0.010 (2)−0.0048 (17)−0.008 (2)
C110.042 (2)0.071 (3)0.033 (2)0.010 (2)−0.0061 (17)−0.002 (2)
C40.042 (2)0.082 (3)0.036 (2)0.018 (2)−0.0031 (18)0.007 (2)
C130.033 (2)0.054 (3)0.035 (2)−0.0012 (18)0.0016 (16)−0.0016 (18)
C120.049 (2)0.059 (3)0.040 (2)−0.001 (2)0.0009 (19)0.008 (2)
C60.0258 (18)0.047 (2)0.036 (2)0.0043 (16)0.0015 (15)−0.0056 (17)
C30.045 (2)0.067 (3)0.047 (2)0.012 (2)0.004 (2)0.016 (2)
C140.043 (2)0.057 (3)0.038 (2)−0.011 (2)0.0053 (18)0.0128 (19)
C100.031 (2)0.060 (3)0.044 (2)0.0008 (19)−0.0034 (17)−0.015 (2)
C20.038 (2)0.044 (2)0.045 (2)0.0038 (18)0.0032 (17)0.0064 (19)
N10.056 (2)0.041 (2)0.059 (2)−0.0003 (17)−0.0052 (18)−0.0027 (17)
C150.040 (2)0.053 (3)0.043 (2)−0.010 (2)−0.0007 (18)−0.003 (2)
C160.066 (3)0.075 (4)0.096 (4)0.020 (3)0.015 (3)−0.009 (3)
C170.124 (6)0.037 (3)0.142 (6)−0.015 (3)−0.008 (5)0.001 (3)

Geometric parameters (Å, °)

Ni1—O32.041 (2)C5—C41.400 (6)
Ni1—O12.041 (2)C5—C61.411 (5)
Ni1—O22.061 (3)C5—H5A0.9300
Ni1—O42.070 (3)C11—C121.372 (6)
Ni1—O52.148 (3)C11—C101.426 (6)
Ni1—O62.150 (3)C4—C31.408 (6)
Cl3—C91.784 (4)C13—C121.416 (5)
Cl1—C21.764 (4)C13—C141.448 (5)
Cl4—C111.754 (4)C12—H12A0.9300
Cl2—C41.748 (4)C3—C21.365 (5)
O2—C71.239 (4)C3—H3A0.9300
O1—C11.295 (4)C14—H14A0.9300
O4—C141.226 (4)C10—H10A0.9300
O6—H6A0.8200N1—C151.356 (5)
O6—H6B0.83 (4)N1—C161.456 (6)
O3—C81.292 (4)N1—C171.534 (6)
O5—C151.301 (5)C15—H15A0.9300
C1—C61.437 (5)C16—H16A0.9600
C1—C21.463 (5)C16—H16B0.9600
C7—C61.483 (5)C16—H16C0.9600
C7—H7A0.9300C17—H17A0.9600
C8—C91.441 (5)C17—H17B0.9600
C8—C131.465 (5)C17—H17C0.9600
C9—C101.374 (5)
O3—Ni1—O192.08 (10)C5—C4—Cl2121.1 (4)
O3—Ni1—O2177.03 (10)C3—C4—Cl2118.0 (3)
O1—Ni1—O290.12 (10)C12—C13—C14114.5 (4)
O3—Ni1—O490.51 (10)C12—C13—C8122.9 (3)
O1—Ni1—O4176.71 (10)C14—C13—C8122.7 (3)
O2—Ni1—O487.36 (10)C11—C12—C13119.2 (4)
O3—Ni1—O592.13 (10)C11—C12—H12A120.4
O1—Ni1—O588.33 (10)C13—C12—H12A120.4
O2—Ni1—O589.92 (10)C5—C6—C1119.4 (4)
O4—Ni1—O589.55 (11)C5—C6—C7116.9 (3)
O3—Ni1—O692.88 (10)C1—C6—C7123.7 (3)
O1—Ni1—O695.38 (10)C2—C3—C4118.5 (4)
O2—Ni1—O684.93 (10)C2—C3—H3A120.8
O4—Ni1—O686.51 (11)C4—C3—H3A120.8
O5—Ni1—O6173.65 (10)O4—C14—C13127.9 (4)
C7—O2—Ni1123.9 (2)O4—C14—H14A116.0
C1—O1—Ni1126.3 (2)C13—C14—H14A116.0
C14—O4—Ni1125.1 (2)C9—C10—C11121.5 (4)
Ni1—O6—H6A109.5C9—C10—H10A119.3
Ni1—O6—H6B106 (3)C11—C10—H10A119.3
H6A—O6—H6B96.5C3—C2—C1123.6 (4)
C8—O3—Ni1124.5 (2)C3—C2—Cl1117.6 (3)
C15—O5—Ni1126.0 (2)C1—C2—Cl1118.9 (3)
O1—C1—C6123.1 (3)C15—N1—C16118.1 (4)
O1—C1—C2120.6 (3)C15—N1—C17124.0 (4)
C6—C1—C2116.3 (3)C16—N1—C17117.4 (4)
O2—C7—C6128.0 (3)O5—C15—N1127.4 (4)
O2—C7—H7A116.0O5—C15—H15A116.3
C6—C7—H7A116.0N1—C15—H15A116.3
O3—C8—C9119.8 (3)N1—C16—H16A109.5
O3—C8—C13125.9 (3)N1—C16—H16B109.5
C9—C8—C13114.4 (3)H16A—C16—H16B109.5
C10—C9—C8121.9 (4)N1—C16—H16C109.5
C10—C9—Cl3119.8 (3)H16A—C16—H16C109.5
C8—C9—Cl3118.3 (3)H16B—C16—H16C109.5
C4—C5—C6121.4 (4)N1—C17—H17A109.5
C4—C5—H5A119.3N1—C17—H17B109.5
C6—C5—H5A119.3H17A—C17—H17B109.5
C12—C11—C10120.1 (4)N1—C17—H17C109.5
C12—C11—Cl4119.0 (3)H17A—C17—H17C109.5
C10—C11—Cl4120.9 (3)H17B—C17—H17C109.5
C5—C4—C3120.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6A···O1i0.821.912.714 (3)168
O6—H6B···O3i0.83 (4)2.17 (4)2.850 (4)139 (4)
O6—H6B···Cl3i0.84 (4)2.67 (4)3.374 (3)143 (4)

Symmetry codes: (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2644).

References

  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  • Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621–1624.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des.4, 585–589.
  • Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.
  • Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc.127, 5979–5989. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography