PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1067.
Published online 2008 July 26. doi:  10.1107/S1600536808022885
PMCID: PMC2961978

(2,2′-Bipyridine)bis­(3-carboxy­pyrazine-2-carboxyl­ato)copper(II) dihydrate

Abstract

The title six-coordinated distorted octa­hedral complex, [Cu(C6H3N2O4)2(C10H8N2)]·2H2O, consists of two 3-carboxy­pyrazine-2-carboxyl­ate anions and one 2,2′-bipyridine ligand. There is a twofold rotation axis positioned at the CuII center. The N atoms of the pyrazine ring occupy the axial positions and two proton-transferred O atoms of tbe acid together with the two N atoms of the 2,2′-bipyridine ligand complete the equatorial plane. The inter­actions existing in the crystal structure are inter­molecular O—H(...)O hydrogen bonds, and C—H(...)O and C—O(...)π inter­actions (O(...)π =3.145 Å, C—O(...)π = 149.75°).

Related literature

There are several compounds made from pyrazine-2,3-dicarboxylic acid, but most of them are in a polymeric form; see, for example: Tombul et al. (2007 [triangle], 2008 [triangle]). For related literature, see: Egli & Sarkhel (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1067-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H3N2O4)2(C10H8N2)]·2H2O
  • M r = 589.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1067-efi1.jpg
  • a = 18.3080 (8) Å
  • b = 9.2168 (4) Å
  • c = 16.3235 (7) Å
  • β = 122.480 (5)°
  • V = 2323.59 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 100 (2) K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.823, T max = 0.823
  • 14982 measured reflections
  • 3500 independent reflections
  • 3289 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.063
  • S = 1.04
  • 3500 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022885/om2248sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022885/om2248Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The structure consists of [Cu(2,3-pzdcH)2(2,2'- bpy)]. 2H2O, where pzdcH2 and 2,2'-bpy are pyrazine-2,3-dicarboxylic acid and 2,2'-bipyridine, respectively. The presence of bidentate mono anionic (pzdcH)- and neutral 2,2'-bipyridine ligands results in a neutral complex. The asymmetric unit is given in Fig. 1. The obtained hexacoordinated geometry is distorted octahedral. The bond lengths and angles around the CuII center are all in accordance with the geometrical steric effects.

There is a 2-fold rotation axis positioned at CuII center, transforming one half of the compound to the other.

The main interaction responsible for stabilizing such a framework is O–H···O hydrogen bonds. The water molecule participates in two hydrogen bonds relating two neighboring complexes. There is also a weaker C–H···O which joins the third complex to the series.

The O3–H3O···O5(x, -y, z - 1/2, 1.664 Å) and O5–H5B···O4 (-x + 3/2, -y + 1/2, -z, 1.839 Å) form hydrogen-bonded chains described by C22(14) graph-set descriptor (Fig. 2). Expansion of these chains results in layer. Furthermore, the C–H···O interactions between the complexes themselves help in the stabilization of the layers. In the third dimension, there is a similar layer at about a 4.1 Å distance. These layers are connected to each other via a fascinating C–O···π interaction by C6–O3 and a pyrazine ring (Fig. 3). All factors including O···π distance (3.145 Å), C–O···π angle (α = 149.75°) and dihedral angle between the planes defined by X2C–O and the aromatic system (ω = 79.18°), are in the mentioned range as in the reference [Egli & Sarkhel, 2007].

Figure 4 represents the packing diagram of this crystal lattice.

Experimental

To a 10 ml of a stirring aqueous solution of pyrazine-2,3-dicarboxylic acid (0.084 g, 0.5 mmol) and 2,2'- bipyridine (0.078 g, 0.5 mmol), was added a 0.5 molar equivalent of CuSO4. 5 H2O (0.062 g, 0.25 mmol) at room temperature. A neutral copper(II) complex, [Cu(pzdcH)2(2,2'- bpy)]. 2H2O, was isolated as very light blue crystals. Slow evaporation of the solvent result in product complex in a week.

Figures

Fig. 1.
The title compound, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Graph set descriptor of chains made by hydrogen bonding.
Fig. 3.
C–O···π interaction between complexes.
Fig. 4.
Crystal packing of [Cu(pzdcH)2(2,2'- bpy)]. 2H2O, along c axis.

Crystal data

[Cu(C6H3N2O4)2(C10H8N2)]·2H2OF000 = 1204
Mr = 589.96Dx = 1.686 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9557 reflections
a = 18.3080 (8) Åθ = 2.6–30.5º
b = 9.2168 (4) ŵ = 1.01 mm1
c = 16.3235 (7) ÅT = 100 (2) K
β = 122.480 (5)ºPrism, colourless
V = 2323.59 (18) Å30.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer3500 independent reflections
Radiation source: fine-focus sealed tube3289 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
T = 100(2) Kθmax = 30.5º
[var phi] and ω scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −26→26
Tmin = 0.823, Tmax = 0.823k = −13→13
14982 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.063  w = 1/[σ2(Fo2) + (0.04P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3500 reflectionsΔρmax = 0.49 e Å3
177 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu11.00000.367362 (16)0.25000.01104 (5)
O10.91326 (4)0.21893 (8)0.16501 (5)0.01386 (13)
O20.85176 (5)0.08782 (9)0.02861 (6)0.02271 (16)
O30.90660 (5)0.00760 (8)−0.12364 (6)0.02014 (15)
H3O0.8658−0.0282−0.18040.024*
O40.81385 (5)0.19258 (9)−0.16881 (6)0.02211 (16)
N11.02854 (5)0.32913 (9)0.12702 (6)0.01404 (15)
N21.01283 (6)0.27792 (10)−0.05007 (6)0.01888 (17)
N30.91587 (5)0.53313 (8)0.19274 (6)0.01230 (14)
C10.96492 (6)0.24626 (10)0.05929 (7)0.01255 (15)
C20.95681 (6)0.22146 (10)−0.02994 (7)0.01416 (16)
C31.07722 (7)0.35806 (12)0.01940 (8)0.01958 (19)
H3A1.11870.39830.00790.023*
C41.08554 (7)0.38463 (11)0.10811 (8)0.01748 (18)
H4A1.13210.44260.15560.021*
C50.90413 (6)0.17769 (10)0.08456 (7)0.01334 (16)
C60.88379 (7)0.13731 (10)−0.11323 (7)0.01512 (17)
C70.82914 (6)0.52122 (10)0.13793 (7)0.01459 (16)
H7A0.80390.42740.11970.018*
C80.77532 (6)0.64164 (10)0.10722 (7)0.01620 (18)
H8A0.71420.63070.06920.019*
C90.81274 (6)0.77869 (11)0.13324 (7)0.01659 (17)
H9A0.77730.86300.11260.020*
C100.90229 (6)0.79146 (10)0.18959 (7)0.01464 (17)
H10A0.92890.88430.20760.018*
C110.95228 (5)0.66600 (10)0.21923 (6)0.01133 (15)
O50.80282 (5)0.09628 (8)0.20844 (6)0.01843 (14)
H5A0.83350.13290.18970.022*
H5B0.76440.16140.19570.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01075 (8)0.00986 (8)0.01153 (8)0.0000.00533 (6)0.000
O10.0162 (3)0.0146 (3)0.0136 (3)−0.0032 (2)0.0099 (3)−0.0027 (2)
O20.0255 (4)0.0255 (4)0.0199 (4)−0.0116 (3)0.0140 (3)−0.0098 (3)
O30.0209 (3)0.0171 (3)0.0184 (3)0.0053 (3)0.0079 (3)−0.0022 (3)
O40.0193 (3)0.0250 (4)0.0179 (3)0.0082 (3)0.0072 (3)−0.0017 (3)
N10.0152 (3)0.0137 (3)0.0149 (4)0.0000 (3)0.0092 (3)0.0009 (3)
N20.0181 (4)0.0255 (4)0.0168 (4)0.0038 (3)0.0118 (3)0.0035 (3)
N30.0119 (3)0.0124 (3)0.0118 (3)0.0001 (3)0.0058 (3)0.0001 (3)
C10.0141 (4)0.0121 (4)0.0132 (4)0.0018 (3)0.0085 (3)0.0013 (3)
C20.0149 (4)0.0154 (4)0.0132 (4)0.0040 (3)0.0082 (3)0.0019 (3)
C30.0171 (4)0.0257 (5)0.0204 (5)0.0016 (3)0.0131 (4)0.0045 (4)
C40.0156 (4)0.0196 (4)0.0184 (4)−0.0010 (3)0.0099 (4)0.0018 (3)
C50.0146 (4)0.0134 (4)0.0133 (4)−0.0003 (3)0.0083 (3)−0.0002 (3)
C60.0178 (4)0.0169 (4)0.0133 (4)0.0035 (3)0.0101 (4)0.0005 (3)
C70.0122 (4)0.0142 (4)0.0154 (4)−0.0007 (3)0.0060 (3)−0.0004 (3)
C80.0120 (4)0.0171 (4)0.0162 (4)0.0008 (3)0.0054 (3)−0.0010 (3)
C90.0138 (4)0.0149 (4)0.0171 (4)0.0027 (3)0.0057 (3)−0.0008 (3)
C100.0144 (4)0.0122 (4)0.0153 (4)0.0006 (3)0.0067 (3)−0.0010 (3)
C110.0114 (4)0.0126 (4)0.0100 (4)0.0000 (3)0.0057 (3)0.0003 (3)
O50.0213 (3)0.0156 (3)0.0244 (4)0.0041 (3)0.0163 (3)0.0056 (3)

Geometric parameters (Å, °)

Cu1—O11.9880 (7)C2—C61.5117 (14)
Cu1—N32.0085 (8)C3—C41.3940 (15)
Cu1—N12.3565 (8)C3—H3A0.9500
O1—C51.2890 (11)C4—H4A0.9500
O2—C51.2243 (12)C7—C81.3869 (13)
O3—C61.3072 (12)C7—H7A0.9500
O3—H3O0.8844C8—C91.3903 (13)
O4—C61.2142 (12)C8—H8A0.9500
N1—C11.3340 (12)C9—C101.3886 (13)
N1—C41.3386 (12)C9—H9A0.9500
N2—C31.3362 (15)C10—C111.3904 (13)
N2—C21.3388 (12)C10—H10A0.9500
N3—C71.3446 (11)C11—C11i1.4754 (17)
N3—C111.3496 (12)O5—H5A0.8419
C1—C21.4012 (13)O5—H5B0.8612
C1—C51.5169 (12)
O1—Cu1—O1i93.03 (4)C4—C3—H3A118.9
O1—Cu1—N3i166.86 (3)N1—C4—C3120.57 (10)
O1—Cu1—N394.19 (3)N1—C4—H4A119.7
O1i—Cu1—N3166.86 (3)C3—C4—H4A119.7
N3i—Cu1—N380.95 (4)O2—C5—O1125.49 (9)
O1—Cu1—N1i91.84 (3)O2—C5—C1118.30 (8)
N3—Cu1—N1i92.57 (3)O1—C5—C1116.20 (8)
O1—Cu1—N176.24 (3)O4—C6—O3124.67 (10)
N3—Cu1—N1100.53 (3)O4—C6—C2121.68 (9)
N1i—Cu1—N1162.80 (4)O3—C6—C2113.34 (8)
C5—O1—Cu1122.13 (6)N3—C7—C8122.08 (9)
C6—O3—H3O109.2N3—C7—H7A119.0
C1—N1—C4118.00 (9)C8—C7—H7A119.0
C1—N1—Cu1107.29 (6)C7—C8—C9118.61 (9)
C4—N1—Cu1134.12 (7)C7—C8—H8A120.7
C3—N2—C2116.72 (9)C9—C8—H8A120.7
C7—N3—C11119.40 (8)C10—C9—C8119.48 (9)
C7—N3—Cu1125.73 (6)C10—C9—H9A120.3
C11—N3—Cu1114.69 (6)C8—C9—H9A120.3
N1—C1—C2120.85 (8)C9—C10—C11118.84 (9)
N1—C1—C5117.05 (8)C9—C10—H10A120.6
C2—C1—C5122.07 (8)C11—C10—H10A120.6
N2—C2—C1121.62 (9)N3—C11—C10121.57 (8)
N2—C2—C6113.75 (8)N3—C11—C11i114.75 (5)
C1—C2—C6124.57 (8)C10—C11—C11i123.67 (5)
N2—C3—C4122.22 (9)H5A—O5—H5B104.5
N2—C3—H3A118.9
O1i—Cu1—O1—C5−96.65 (7)C3—N2—C2—C6177.66 (9)
N3i—Cu1—O1—C526.65 (17)N1—C1—C2—N20.90 (14)
N3—Cu1—O1—C594.33 (7)C5—C1—C2—N2−177.34 (9)
N1i—Cu1—O1—C5−172.96 (7)N1—C1—C2—C6−175.91 (9)
N1—Cu1—O1—C5−5.49 (7)C5—C1—C2—C65.84 (14)
O1—Cu1—N1—C18.79 (6)C2—N2—C3—C4−1.13 (15)
O1i—Cu1—N1—C1101.46 (6)C1—N1—C4—C31.09 (14)
N3i—Cu1—N1—C1−164.26 (6)Cu1—N1—C4—C3−168.92 (7)
N3—Cu1—N1—C1−82.99 (6)N2—C3—C4—N10.34 (16)
N1i—Cu1—N1—C155.98 (14)Cu1—O1—C5—O2−179.47 (8)
O1—Cu1—N1—C4179.57 (10)Cu1—O1—C5—C11.41 (11)
O1i—Cu1—N1—C4−87.76 (10)N1—C1—C5—O2−171.48 (9)
N3i—Cu1—N1—C46.52 (10)C2—C1—C5—O26.83 (14)
N3—Cu1—N1—C487.79 (10)N1—C1—C5—O17.71 (12)
N1i—Cu1—N1—C4−133.24 (9)C2—C1—C5—O1−173.98 (9)
O1—Cu1—N3—C715.90 (8)N2—C2—C6—O4−96.00 (11)
O1i—Cu1—N3—C7−107.29 (14)C1—C2—C6—O481.03 (13)
N3i—Cu1—N3—C7−176.39 (10)N2—C2—C6—O377.89 (11)
N1i—Cu1—N3—C7−76.14 (8)C1—C2—C6—O3−105.07 (11)
N1—Cu1—N3—C792.66 (8)C11—N3—C7—C80.14 (14)
O1—Cu1—N3—C11−169.01 (6)Cu1—N3—C7—C8175.02 (7)
O1i—Cu1—N3—C1167.81 (15)N3—C7—C8—C90.79 (15)
N3i—Cu1—N3—C11−1.30 (5)C7—C8—C9—C10−0.57 (15)
N1i—Cu1—N3—C1198.96 (6)C8—C9—C10—C11−0.53 (15)
N1—Cu1—N3—C11−92.25 (7)C7—N3—C11—C10−1.31 (13)
C4—N1—C1—C2−1.68 (14)Cu1—N3—C11—C10−176.74 (7)
Cu1—N1—C1—C2170.83 (7)C7—N3—C11—C11i178.90 (9)
C4—N1—C1—C5176.65 (8)Cu1—N3—C11—C11i3.47 (12)
Cu1—N1—C1—C5−10.84 (9)C9—C10—C11—N31.50 (14)
C3—N2—C2—C10.53 (14)C9—C10—C11—C11i−178.73 (10)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3O···O5ii0.881.662.5390 (12)170
O5—H5A···O10.841.892.7218 (13)173
O5—H5B···O4iii0.861.842.6989 (13)177
C7—H7A···O2iii0.952.573.1144 (14)117
C8—H8A···O2iii0.952.453.0433 (13)121
C9—H9A···O5iv0.952.553.2168 (13)127

Symmetry codes: (ii) x, −y, z−1/2; (iii) −x+3/2, −y+1/2, −z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2248).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res.40, 197–205. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.
  • Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography