PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1065–m1066.
Published online 2008 July 26. doi:  10.1107/S1600536808022897
PMCID: PMC2961977

Propane-1,3-diammonium bis­[aqua­chlorido(4-hydroxy­pyridine-2,6-di­carboxyl­ato-κ3 O 2,N,O 6)mercurate(II)] tetra­hydrate

Abstract

The reaction of mercury(II) chloride dihydrate, propane-1,3-diamine and 4-hydroxy­pyridine-2,6-dicarboxylic acid in a 1:1:1 molar ratio in aqueous solution, resulted in the formation of the title compound, (C3H12N2)[Hg(C7H3NO5)Cl(H2O)]2·4H2O or (pnH2)[Hg(hypydc)Cl(H2O)]2·4H2O (where pn is propane-1,3-diamine and hypydcH2 is 4-hydroxy­pyridine-2,6-dicarboxylic acid). The metal atom is coordinated by one chloride group, one water mol­ecule cis to the chloride ligand and one (hypydc)2− ligand. The coordinated water mol­ecule is almost perpendicular to the plane of the aromatic ring of (hypydc)2−. The geometry of the resulting HgClNO3 coordination can be described as distorted square-pyramidal. This structure also contains propane-1,3-diammonium (site symmetry 2) as a counter-ion and four uncoordinated water mol­ecules. There is a wide range of non-covalent inter­actions consisting of hydrogen bonding [of the types O—H(...)O, N—H(...)O and C—H(...)O, with D(...)A ranging from 2.548 (5) to 3.393 (6) Å] and ion pairing.

Related literature

For related literature, see: Aghabozorg et al. (2007 [triangle], 2008 [triangle]); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006 [triangle]); Aghabozorg, Ghadermazi & Ramezanipour (2006 [triangle]); Agha­bozorg, Ghasemikhah et al. (2006 [triangle]); Ramezanipour et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1065-scheme1.jpg

Experimental

Crystal data

  • (C3H12N2)[Hg(C7H3NO5)Cl(H2O)]2·4H2O
  • M r = 1018.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1065-efi2.jpg
  • a = 29.2207 (13) Å
  • b = 6.7630 (3) Å
  • c = 15.4913 (7) Å
  • β = 114.5130 (10)°
  • V = 2785.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 11.28 mm−1
  • T = 100 (2) K
  • 0.11 × 0.08 × 0.07 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.284, T max = 0.457
  • 9362 measured reflections
  • 3041 independent reflections
  • 2632 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.047
  • S = 0.99
  • 3041 reflections
  • 187 parameters
  • H-atom parameters constrained
  • Δρmax = 0.79 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022897/om2244sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022897/om2244Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently, we have defined a plan to prepare water soluble proton-transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which protons transfer from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylicacid, btcH4, to propane-1,3-diamine (pn) and 1,10-phenanthroline, (phen). These resulted in the formation of some novel proton transfer compounds such as (pnH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi, Ramezanipour, 2006), (pnH2)2(btc).2H2O (Aghabozorg, et al., 2007) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi, Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, et al., 2008).

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively.

The HgII atom is five-coordinated by one chloro group, one water molecule and one 4-hydroxypyridine-2,6-dicarboxylate, or (hypydc)2–, group which is coordinated through one pyridine N atom and two carboxylate O atoms. These distances are in good agreement with our two recently reported HgII structures (Aghabozorg, Ghasemikhah, Ghadermazi, et al., 2006; Ramezanipour et al., 2005).

The sum of the Cl1—Hg1—O1, O1—Hg1—N1, N1—Hg1—O4 and O4—Hg1—Cl1 bond angles equals 361.33 °, which indicates that these four atoms are almost located in the plane. As it can be seen, the O1W atom of the coordinated water molecule occupies the axial position, while the O1, O4, N1 and Cl1 atoms form the equatorial plane of the square pyramid. The O1W—Hg1—Cl1, O1W—Hg1—N1, O1W—Hg1—O1 and O1W—Hg1—O4 angles are 94.63 (7), 96.83 (11), 91.72 (9) and 82.81 (9)°, respectively, indicating that the coordinated water molecule is located at cis position to the chloro ligand and is also almost perpendicular to the square plane of the pyramid. Therefore, the geometry of the resulting HgClNO3 coordination can be described as distorted square pyramidal. The molecular structure of the title compound also contains propane-1,3-diammonium (site symmetry 2) as counter-ion and four uncoordinated water molecules. In the crystal structure, there is a wide range of non-covalent interactions consisting of hydrogen bonding (of the type O—H···O, N—H···O and C—H···O with D···A ranging from 2.548 (5) Å to 3.393 (6) Å) and ion pairing (Table 1).

Experimental

Aqueous solutions of HgCl2.2H2O (76 mg, 0.2 mmol), propane-1,3-diamine (18 mg, 0.2 mmol) and 4-hydroxypyridine-2,6-dicarboxylic acid (72 mg, 0.2 mmol) were mixed in a 1:1:1 molar ratio, and the reaction mixture was heated at about 313 K for 2 h. Colourless crystals of the title compound were obtained from the solution after three weeks at room temperature.

Refinement

The hydrogen atoms of the NH3 and OH groups, and also H atoms of water molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. All H(N) and H(O) atoms were refined in isotropic approximation in rigid model, the H(C) atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Ci) and 1.5 Ueq(Cii) for OH, NH3 group and water molecules, where U(C) are the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Figures

Fig. 1.
The molecular structure of the title compound, displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code A: -x + 1, y, -z + 3/2.
Fig. 2.
The crystal packing of the title compound viewed down the b axis, hydrogen bonds are shown as dashed lines.

Crystal data

(C3H12N2)[Hg(C7H3NO5)Cl(H2O)]2·4H2OF000 = 1928
Mr = 1018.53Dx = 2.429 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
a = 29.2207 (13) ÅCell parameters from 2868 reflections
b = 6.7630 (3) Åθ = 3–27º
c = 15.4913 (7) ŵ = 11.28 mm1
β = 114.5130 (10)ºT = 100 (2) K
V = 2785.5 (2) Å3Prism, colourless
Z = 40.11 × 0.08 × 0.07 mm

Data collection

Bruker SMART APEXII diffractometer3041 independent reflections
Radiation source: fine-focus sealed tube2632 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
T = 100(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −37→36
Tmin = 0.284, Tmax = 0.457k = −8→8
9362 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.047  w = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.003
3041 reflectionsΔρmax = 0.79 e Å3
187 parametersΔρmin = −0.84 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.360437 (6)0.72342 (2)0.843452 (11)0.01284 (6)
Cl10.40073 (4)0.88117 (16)0.98816 (7)0.0205 (2)
O10.41510 (10)0.6883 (4)0.7583 (2)0.0163 (6)
O20.40827 (11)0.6472 (5)0.6102 (2)0.0200 (7)
O30.22507 (10)0.4439 (4)0.43123 (19)0.0161 (6)
H30.24220.40650.39560.024*
O40.27295 (10)0.6300 (4)0.8299 (2)0.0159 (6)
O50.19566 (10)0.6269 (5)0.7138 (2)0.0173 (6)
N10.31418 (12)0.6356 (5)0.7000 (2)0.0115 (7)
C10.33511 (15)0.6083 (6)0.6378 (3)0.0118 (8)
C20.30679 (15)0.5421 (6)0.5469 (3)0.0135 (9)
H2A0.32180.52000.50530.016*
C30.25554 (15)0.5084 (6)0.5177 (3)0.0118 (9)
C40.23390 (15)0.5464 (6)0.5813 (3)0.0120 (8)
H4A0.19940.53240.56270.014*
C50.26445 (15)0.6044 (6)0.6713 (3)0.0113 (8)
C60.39097 (15)0.6514 (6)0.6713 (3)0.0130 (8)
C70.24210 (15)0.6239 (6)0.7438 (3)0.0106 (8)
N20.47091 (14)0.1672 (6)0.8789 (3)0.0266 (9)
H1C0.43840.14430.84380.040*
H1D0.47440.23260.93110.040*
H1E0.48730.05280.89490.040*
C80.49190 (17)0.2877 (7)0.8234 (3)0.0254 (11)
H8A0.52370.34550.86590.030*
H8B0.46890.39450.79160.030*
C90.50000.1595 (9)0.75000.0249 (15)
H9A0.47110.07630.71900.030*
O1W0.38232 (10)0.3754 (4)0.91250 (19)0.0169 (6)
H1A0.35820.30010.88950.025*
H1B0.38480.39760.96630.025*
O2W0.50594 (11)0.7731 (4)0.9089 (2)0.0245 (7)
H2B0.48420.74510.85350.037*
H2C0.53150.74790.89770.037*
O3W0.12234 (11)0.6629 (5)0.7822 (2)0.0245 (7)
H3A0.14280.64360.83950.037*
H3B0.14380.63640.76000.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.00977 (9)0.01538 (9)0.01123 (8)−0.00051 (7)0.00222 (6)−0.00185 (7)
Cl10.0158 (5)0.0230 (6)0.0160 (5)0.0004 (4)−0.0002 (4)−0.0066 (4)
O10.0102 (15)0.0221 (16)0.0141 (15)−0.0007 (12)0.0025 (12)−0.0031 (13)
O20.0127 (16)0.0302 (17)0.0187 (16)−0.0032 (13)0.0082 (13)0.0011 (14)
O30.0106 (15)0.0279 (17)0.0084 (14)−0.0034 (12)0.0026 (12)−0.0056 (12)
O40.0095 (15)0.0257 (17)0.0120 (15)−0.0008 (12)0.0038 (12)−0.0012 (13)
O50.0103 (16)0.0285 (17)0.0128 (15)0.0006 (13)0.0044 (13)−0.0003 (13)
N10.0085 (17)0.0113 (16)0.0103 (17)−0.0020 (13)−0.0004 (14)−0.0009 (14)
C10.012 (2)0.010 (2)0.012 (2)0.0019 (15)0.0034 (17)0.0010 (16)
C20.017 (2)0.011 (2)0.014 (2)0.0006 (16)0.0073 (18)0.0031 (16)
C30.013 (2)0.011 (2)0.008 (2)−0.0001 (16)0.0018 (18)0.0040 (15)
C40.008 (2)0.015 (2)0.009 (2)0.0020 (16)0.0006 (17)0.0015 (16)
C50.010 (2)0.011 (2)0.014 (2)0.0012 (15)0.0068 (18)0.0022 (16)
C60.012 (2)0.0094 (19)0.016 (2)0.0002 (16)0.0040 (18)0.0009 (17)
C70.012 (2)0.0068 (19)0.012 (2)0.0007 (15)0.0039 (17)−0.0015 (15)
N20.018 (2)0.028 (2)0.031 (2)0.0039 (17)0.0067 (18)−0.0086 (18)
C80.013 (2)0.017 (2)0.033 (3)0.0037 (18)−0.004 (2)−0.003 (2)
C90.013 (3)0.017 (3)0.040 (4)0.0000.005 (3)0.000
O1W0.0174 (17)0.0173 (15)0.0139 (15)−0.0014 (12)0.0046 (13)−0.0020 (12)
O2W0.0126 (16)0.0283 (18)0.0305 (18)0.0014 (13)0.0067 (14)−0.0098 (15)
O3W0.0126 (16)0.039 (2)0.0191 (16)0.0034 (14)0.0037 (14)0.0031 (15)

Geometric parameters (Å, °)

Hg1—N12.151 (3)C2—H2A0.9300
Hg1—Cl12.3151 (10)C3—C41.397 (5)
Hg1—O12.469 (3)C4—C51.365 (6)
Hg1—O1W2.555 (3)C4—Hg1ii4.049 (4)
Hg1—O42.556 (3)C4—H4A0.9300
Hg1—C13.058 (4)C5—C71.521 (5)
Hg1—C53.069 (4)C7—Hg1ii3.844 (4)
Hg1—O5i3.117 (3)N2—C81.489 (6)
Hg1—C63.182 (4)N2—H1C0.8900
Hg1—C73.219 (4)N2—H1D0.8900
Hg1—O3Wi3.700 (3)N2—H1E0.8900
Hg1—C7i3.844 (4)C8—C91.524 (6)
O1—C61.261 (5)C8—H8A0.9700
O2—C61.244 (5)C8—H8B0.9700
O3—C31.337 (5)C9—C8iii1.524 (6)
O3—H30.9220C9—H9A0.9601
O4—C71.263 (5)O1W—H1A0.8205
O5—C71.239 (5)O1W—H1B0.8199
O5—Hg1ii3.117 (3)O2W—H2B0.8500
N1—C51.348 (5)O2W—H2C0.8499
N1—C11.351 (5)O3W—Hg1ii3.700 (3)
C1—C21.379 (6)O3W—H3A0.8501
C1—C61.522 (5)O3W—H3B0.8501
C2—C31.392 (6)
N1—Hg1—Cl1167.66 (9)C3—O3—H3112.8
N1—Hg1—O171.94 (11)C7—O4—Hg1110.2 (2)
Cl1—Hg1—O1112.32 (7)C7—O5—Hg1ii117.2 (2)
N1—Hg1—O1W96.83 (11)C5—N1—C1119.2 (3)
Cl1—Hg1—O1W94.63 (7)C5—N1—Hg1120.9 (3)
O1—Hg1—O1W91.72 (9)C1—N1—Hg1119.9 (3)
N1—Hg1—O470.64 (11)N1—C1—C2121.0 (4)
Cl1—Hg1—O4106.43 (7)N1—C1—C6118.0 (3)
O1—Hg1—O4141.18 (9)C2—C1—C6121.0 (4)
O1W—Hg1—O482.81 (9)C2—C1—Hg1158.4 (3)
N1—Hg1—C122.53 (11)C6—C1—Hg180.5 (2)
Cl1—Hg1—C1158.80 (8)C1—C2—C3119.6 (4)
O1—Hg1—C149.41 (10)C1—C2—H2A120.2
O1W—Hg1—C196.44 (10)C3—C2—H2A120.2
O4—Hg1—C192.87 (10)O3—C3—C2123.9 (4)
N1—Hg1—C522.16 (11)O3—C3—C4117.3 (4)
Cl1—Hg1—C5151.22 (8)C2—C3—C4118.8 (4)
O1—Hg1—C594.09 (10)C5—C4—C3118.5 (4)
O1W—Hg1—C595.85 (10)C5—C4—Hg1ii95.5 (2)
O4—Hg1—C548.81 (9)C3—C4—Hg1ii131.7 (3)
C1—Hg1—C544.68 (10)C5—C4—H4A120.7
N1—Hg1—O5i85.23 (10)C3—C4—H4A120.7
Cl1—Hg1—O5i82.43 (6)N1—C5—C4122.7 (4)
O1—Hg1—O5i108.22 (8)N1—C5—C7118.5 (3)
O1W—Hg1—O5i159.50 (8)C4—C5—C7118.7 (3)
O4—Hg1—O5i78.64 (8)C4—C5—Hg1159.7 (3)
C1—Hg1—O5i93.15 (9)C7—C5—Hg181.6 (2)
C5—Hg1—O5i78.42 (9)O2—C6—O1126.5 (4)
N1—Hg1—C650.66 (11)O2—C6—C1116.9 (4)
Cl1—Hg1—C6132.49 (8)O1—C6—C1116.6 (3)
O1—Hg1—C621.38 (10)O2—C6—Hg1169.9 (3)
O1W—Hg1—C695.82 (9)O1—C6—Hg145.54 (19)
O4—Hg1—C6120.80 (10)C1—C6—Hg171.4 (2)
C1—Hg1—C628.14 (10)O5—C7—O4125.9 (4)
C5—Hg1—C672.81 (10)O5—C7—C5117.6 (3)
O5i—Hg1—C6101.11 (9)O4—C7—C5116.5 (3)
N1—Hg1—C750.00 (11)O5—C7—Hg1165.4 (3)
Cl1—Hg1—C7125.05 (7)O4—C7—Hg148.15 (19)
O1—Hg1—C7121.87 (9)C5—C7—Hg170.6 (2)
O1W—Hg1—C792.32 (9)O5—C7—Hg1ii46.1 (2)
O4—Hg1—C721.60 (9)O4—C7—Hg1ii120.3 (3)
C1—Hg1—C772.52 (10)C5—C7—Hg1ii101.0 (2)
C5—Hg1—C727.86 (9)Hg1—C7—Hg1ii147.28 (12)
O5i—Hg1—C773.33 (9)C8—N2—H1C109.5
C6—Hg1—C7100.66 (10)C8—N2—H1D109.5
N1—Hg1—O3Wi80.95 (10)H1C—N2—H1D109.5
Cl1—Hg1—O3Wi90.78 (6)C8—N2—H1E109.5
O1—Hg1—O3Wi62.42 (8)H1C—N2—H1E109.5
O1W—Hg1—O3Wi153.57 (8)H1D—N2—H1E109.5
O4—Hg1—O3Wi120.33 (8)N2—C8—C9110.3 (4)
C1—Hg1—O3Wi71.54 (9)N2—C8—H8A109.6
C5—Hg1—O3Wi91.63 (9)C9—C8—H8A109.6
O5i—Hg1—O3Wi46.93 (7)N2—C8—H8B109.6
C6—Hg1—O3Wi62.32 (9)C9—C8—H8B109.6
C7—Hg1—O3Wi105.62 (8)H8A—C8—H8B108.1
N1—Hg1—C7i76.55 (11)C8—C9—C8iii110.6 (5)
Cl1—Hg1—C7i91.42 (6)C8—C9—H9A109.3
O1—Hg1—C7i117.56 (9)C8iii—C9—H9A109.6
O1W—Hg1—C7i145.03 (9)Hg1—O1W—H1A111.7
O4—Hg1—C7i62.49 (9)Hg1—O1W—H1B99.1
C1—Hg1—C7i89.81 (9)H1A—O1W—H1B104.6
C5—Hg1—C7i65.25 (9)Hg1—O2W—H2B56.6
O5i—Hg1—C7i16.66 (8)Hg1—O2W—H2C150.6
C6—Hg1—C7i105.18 (9)H2B—O2W—H2C95.7
C7—Hg1—C7i56.86 (4)Hg1ii—O3W—H3A103.6
O3Wi—Hg1—C7i60.36 (7)Hg1ii—O3W—H3B48.2
C6—O1—Hg1113.1 (2)H3A—O3W—H3B94.0
N1—Hg1—O1—C65.0 (3)C7—Hg1—C5—C4−175.8 (9)
Cl1—Hg1—O1—C6−162.6 (3)O3Wi—Hg1—C5—C462.7 (8)
O1W—Hg1—O1—C6101.6 (3)C7i—Hg1—C5—C4118.8 (8)
O4—Hg1—O1—C621.0 (3)N1—Hg1—C5—C7177.6 (4)
C1—Hg1—O1—C64.6 (3)Cl1—Hg1—C5—C7−26.9 (3)
C5—Hg1—O1—C65.7 (3)O1—Hg1—C5—C7176.0 (2)
O5i—Hg1—O1—C6−73.5 (3)O1W—Hg1—C5—C783.9 (2)
C7—Hg1—O1—C67.8 (3)O4—Hg1—C5—C78.77 (19)
O3Wi—Hg1—O1—C6−84.1 (3)C1—Hg1—C5—C7177.1 (3)
C7i—Hg1—O1—C6−58.5 (3)O5i—Hg1—C5—C7−76.2 (2)
N1—Hg1—O4—C7−15.6 (3)C6—Hg1—C5—C7178.2 (2)
Cl1—Hg1—O4—C7151.8 (2)O3Wi—Hg1—C5—C7−121.5 (2)
O1—Hg1—O4—C7−31.7 (3)C7i—Hg1—C5—C7−65.42 (19)
O1W—Hg1—O4—C7−115.5 (3)Hg1—O1—C6—O2171.9 (3)
C1—Hg1—O4—C7−19.3 (3)Hg1—O1—C6—C1−7.9 (4)
C5—Hg1—O4—C7−11.2 (2)N1—C1—C6—O2−172.1 (4)
O5i—Hg1—O4—C773.3 (3)C2—C1—C6—O28.4 (6)
C6—Hg1—O4—C7−22.9 (3)Hg1—C1—C6—O2−173.9 (4)
O3Wi—Hg1—O4—C750.9 (3)N1—C1—C6—O17.8 (5)
C7i—Hg1—O4—C769.0 (2)C2—C1—C6—O1−171.7 (4)
Cl1—Hg1—N1—C5−69.5 (6)Hg1—C1—C6—O16.0 (3)
O1—Hg1—N1—C5178.3 (3)N1—C1—C6—Hg11.8 (3)
O1W—Hg1—N1—C588.7 (3)C2—C1—C6—Hg1−177.7 (4)
O4—Hg1—N1—C58.9 (3)N1—Hg1—C6—O2145.7 (18)
C1—Hg1—N1—C5179.1 (5)Cl1—Hg1—C6—O2−18.5 (18)
O5i—Hg1—N1—C5−70.8 (3)O1—Hg1—C6—O2−40.5 (16)
C6—Hg1—N1—C5−179.3 (4)O1W—Hg1—C6—O2−120.2 (17)
C7—Hg1—N1—C51.4 (3)O4—Hg1—C6—O2154.7 (17)
O3Wi—Hg1—N1—C5−117.9 (3)C1—Hg1—C6—O2147.0 (18)
C7i—Hg1—N1—C5−56.4 (3)C5—Hg1—C6—O2145.4 (17)
Cl1—Hg1—N1—C1111.5 (4)O5i—Hg1—C6—O271.4 (17)
O1—Hg1—N1—C1−0.8 (3)C7—Hg1—C6—O2146.3 (17)
O1W—Hg1—N1—C1−90.3 (3)O3Wi—Hg1—C6—O244.1 (17)
O4—Hg1—N1—C1−170.2 (3)C7i—Hg1—C6—O288.0 (17)
C5—Hg1—N1—C1−179.1 (5)N1—Hg1—C6—O1−173.8 (3)
O5i—Hg1—N1—C1110.2 (3)Cl1—Hg1—C6—O122.0 (3)
C6—Hg1—N1—C11.6 (3)O1W—Hg1—C6—O1−79.8 (3)
C7—Hg1—N1—C1−177.6 (4)O4—Hg1—C6—O1−164.8 (2)
O3Wi—Hg1—N1—C163.1 (3)C1—Hg1—C6—O1−172.5 (4)
C7i—Hg1—N1—C1124.6 (3)C5—Hg1—C6—O1−174.1 (3)
C5—N1—C1—C2−2.5 (6)O5i—Hg1—C6—O1111.9 (3)
Hg1—N1—C1—C2176.6 (3)C7—Hg1—C6—O1−173.2 (3)
C5—N1—C1—C6178.0 (3)O3Wi—Hg1—C6—O184.6 (3)
Hg1—N1—C1—C6−2.9 (5)C7i—Hg1—C6—O1128.5 (3)
C5—N1—C1—Hg1−179.1 (5)N1—Hg1—C6—C1−1.3 (2)
Cl1—Hg1—C1—N1−146.6 (3)Cl1—Hg1—C6—C1−165.48 (17)
O1—Hg1—C1—N1179.0 (3)O1—Hg1—C6—C1172.5 (4)
O1W—Hg1—C1—N192.3 (3)O1W—Hg1—C6—C192.8 (2)
O4—Hg1—C1—N19.2 (3)O4—Hg1—C6—C17.7 (2)
C5—Hg1—C1—N10.5 (3)C5—Hg1—C6—C1−1.6 (2)
O5i—Hg1—C1—N1−69.5 (3)O5i—Hg1—C6—C1−75.6 (2)
C6—Hg1—C1—N1−177.4 (4)C7—Hg1—C6—C1−0.7 (2)
C7—Hg1—C1—N11.9 (3)O3Wi—Hg1—C6—C1−102.9 (2)
O3Wi—Hg1—C1—N1−111.8 (3)C7i—Hg1—C6—C1−59.0 (2)
C7i—Hg1—C1—N1−53.2 (3)Hg1ii—O5—C7—O4−99.8 (4)
N1—Hg1—C1—C2−8.0 (7)Hg1ii—O5—C7—C578.1 (4)
Cl1—Hg1—C1—C2−154.6 (6)Hg1ii—O5—C7—Hg1−160.3 (10)
O1—Hg1—C1—C2171.0 (8)Hg1—O4—C7—O5−162.9 (3)
O1W—Hg1—C1—C284.3 (8)Hg1—O4—C7—C519.2 (4)
O4—Hg1—C1—C21.2 (8)Hg1—O4—C7—Hg1ii141.68 (15)
C5—Hg1—C1—C2−7.5 (7)N1—C5—C7—O5168.5 (4)
O5i—Hg1—C1—C2−77.5 (8)C4—C5—C7—O5−14.8 (5)
C6—Hg1—C1—C2174.6 (9)Hg1—C5—C7—O5166.9 (3)
C7—Hg1—C1—C2−6.1 (7)N1—C5—C7—O4−13.4 (5)
O3Wi—Hg1—C1—C2−119.9 (8)C4—C5—C7—O4163.3 (4)
C7i—Hg1—C1—C2−61.2 (8)Hg1—C5—C7—O4−15.0 (3)
N1—Hg1—C1—C6177.4 (4)N1—C5—C7—Hg11.6 (3)
Cl1—Hg1—C1—C630.7 (4)C4—C5—C7—Hg1178.3 (4)
O1—Hg1—C1—C6−3.58 (19)N1—C5—C7—Hg1ii−145.6 (3)
O1W—Hg1—C1—C6−90.3 (2)C4—C5—C7—Hg1ii31.2 (4)
O4—Hg1—C1—C6−173.4 (2)Hg1—C5—C7—Hg1ii−147.18 (11)
C5—Hg1—C1—C6177.9 (3)N1—Hg1—C7—O5−128.0 (12)
O5i—Hg1—C1—C6107.8 (2)Cl1—Hg1—C7—O537.8 (12)
C7—Hg1—C1—C6179.3 (2)O1—Hg1—C7—O5−131.5 (11)
O3Wi—Hg1—C1—C665.5 (2)O1W—Hg1—C7—O5135.1 (11)
C7i—Hg1—C1—C6124.2 (2)O4—Hg1—C7—O571.4 (11)
N1—C1—C2—C32.0 (6)C1—Hg1—C7—O5−128.9 (11)
C6—C1—C2—C3−178.5 (4)C5—Hg1—C7—O5−126.8 (12)
Hg1—C1—C2—C37.7 (10)O5i—Hg1—C7—O5−30.0 (11)
C1—C2—C3—O3−179.8 (4)C6—Hg1—C7—O5−128.6 (11)
C1—C2—C3—C41.1 (6)O3Wi—Hg1—C7—O5−64.6 (11)
O3—C3—C4—C5177.3 (4)C7i—Hg1—C7—O5−27.3 (10)
C2—C3—C4—C5−3.6 (6)N1—Hg1—C7—O4160.7 (3)
O3—C3—C4—Hg1ii48.2 (5)Cl1—Hg1—C7—O4−33.6 (3)
C2—C3—C4—Hg1ii−132.7 (3)O1—Hg1—C7—O4157.2 (2)
C1—N1—C5—C4−0.2 (6)O1W—Hg1—C7—O463.7 (3)
Hg1—N1—C5—C4−179.2 (3)C1—Hg1—C7—O4159.7 (3)
C1—N1—C5—C7176.4 (3)C5—Hg1—C7—O4161.8 (4)
Hg1—N1—C5—C7−2.7 (5)O5i—Hg1—C7—O4−101.4 (3)
C1—N1—C5—Hg1179.1 (5)C6—Hg1—C7—O4160.1 (3)
C3—C4—C5—N13.2 (6)O3Wi—Hg1—C7—O4−135.9 (2)
Hg1ii—C4—C5—N1147.6 (3)C7i—Hg1—C7—O4−98.7 (3)
C3—C4—C5—C7−173.3 (3)N1—Hg1—C7—C5−1.2 (2)
Hg1ii—C4—C5—C7−29.0 (4)Cl1—Hg1—C7—C5164.56 (18)
C3—C4—C5—Hg11.9 (10)O1—Hg1—C7—C5−4.7 (2)
Hg1ii—C4—C5—Hg1146.3 (7)O1W—Hg1—C7—C5−98.1 (2)
Cl1—Hg1—C5—N1155.4 (3)O4—Hg1—C7—C5−161.8 (4)
O1—Hg1—C5—N1−1.6 (3)C1—Hg1—C7—C5−2.1 (2)
O1W—Hg1—C5—N1−93.8 (3)O5i—Hg1—C7—C596.8 (2)
O4—Hg1—C5—N1−168.9 (3)C6—Hg1—C7—C5−1.8 (2)
C1—Hg1—C5—N1−0.5 (3)O3Wi—Hg1—C7—C562.2 (2)
O5i—Hg1—C5—N1106.2 (3)C7i—Hg1—C7—C599.5 (2)
C6—Hg1—C5—N10.5 (3)N1—Hg1—C7—Hg1ii78.7 (2)
C7—Hg1—C5—N1−177.6 (4)Cl1—Hg1—C7—Hg1ii−115.6 (2)
O3Wi—Hg1—C5—N160.9 (3)O1—Hg1—C7—Hg1ii75.2 (2)
C7i—Hg1—C5—N1116.9 (3)O1W—Hg1—C7—Hg1ii−18.3 (2)
N1—Hg1—C5—C41.9 (7)O4—Hg1—C7—Hg1ii−82.0 (3)
Cl1—Hg1—C5—C4157.3 (7)C1—Hg1—C7—Hg1ii77.8 (2)
O1—Hg1—C5—C40.2 (8)C5—Hg1—C7—Hg1ii79.9 (3)
O1W—Hg1—C5—C4−91.9 (8)O5i—Hg1—C7—Hg1ii176.6 (2)
O4—Hg1—C5—C4−167.0 (9)C6—Hg1—C7—Hg1ii78.1 (2)
C1—Hg1—C5—C41.3 (8)O3Wi—Hg1—C7—Hg1ii142.1 (2)
O5i—Hg1—C5—C4108.0 (8)C7i—Hg1—C7—Hg1ii179.4 (3)
C6—Hg1—C5—C42.4 (8)N2—C8—C9—C8iii165.1 (4)

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O4iv0.921.632.548 (5)173
N2—H1C···O3Wii0.892.032.830 (5)150
N2—H1D···O2Wv0.892.303.096 (6)149
N2—H1E···O2Wvi0.891.962.824 (6)165
O1W—H1A···O5ii0.822.082.854 (5)157
O1W—H1B···O2vii0.822.072.837 (6)157
O2W—H2B···O10.851.982.771 (6)154
O2W—H2C···O2iii0.851.942.777 (5)169
O3W—H3A···O3vii0.852.303.019 (6)142
O3W—H3B···O50.851.932.766 (6)169
C8—H8B···O10.972.453.393 (6)163

Symmetry codes: (iv) x, −y+1, z−1/2; (ii) −x+1/2, y−1/2, −z+3/2; (v) −x+1, −y+1, −z+2; (vi) x, y−1, z; (vii) x, −y+1, z+1/2; (iii) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2244).

References

  • Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.
  • Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146.
  • Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.
  • Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2269–m2271.
  • Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc.5, 184–227.
  • Bruker (2007). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ramezanipour, F., Aghabozorg, H. & Soleimannejad, J. (2005). Acta Cryst. E61, m1194–m1196.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography