PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1063–m1064.
Published online 2008 July 26. doi:  10.1107/S1600536808022873
PMCID: PMC2961976

Tetra­kis(2,4,6-triamino-1,3,5-triazin-1-ium) tris­(pyridine-2,6-dicarboxyl­ato)calcate(II) hexa­hydrate

Abstract

The title compound, (C3H7N6)4[Ca(C7H3NO4)3]·6H2O or (tataH)4[Ca(pydc)3]·6H2O (where tata is 2,4,6-triamino-1,3,5-triazine and pydcH2 is pyridine-2,6-dicarboxylic acid), was obtained by reaction of Ca(NO3)2·4H2O with the proton-transfer compound (tataH)2(pydc) in aqueous solution. The [Ca(pydc)3]4− anion has twofold crystallographic symmetry. It is a nine-coordinate CaII complex with a distorted tricapped trigonal-prismatic coordination geometry. The structure also contains four tataH+ cations and six uncoordinated water mol­ecules. There are extensive O—H(...)O, O—H(...)N, N—H(...)O, N—H(...)N and C—H(...)O hydrogen bonds in the crystal structure.

Related literature

For related literature, see: Aghabozorg et al. (2006 [triangle]); Aghabozorg, Attar Gharamaleki et al. (2008 [triangle]); Aghabozorg, Manteghi & Sheshmani (2008 [triangle]); Aghajani et al. (2006 [triangle]); Sharif et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1063-scheme1.jpg

Experimental

Crystal data

  • (C3H7N6)4[Ca(C7H3NO4)3]·6H2O
  • M r = 1152.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1063-efi1.jpg
  • a = 17.9605 (15) Å
  • b = 10.1672 (9) Å
  • c = 25.922 (2) Å
  • β = 94.467 (2)°
  • V = 4719.1 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 100 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.928, T max = 0.954
  • 16983 measured reflections
  • 6215 independent reflections
  • 4412 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.127
  • S = 1.09
  • 6215 reflections
  • 365 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022873/om2249sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022873/om2249Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydrogen bonding plays a key role in chemical, catalytic and biochemical processes, as well as in supramolecular chemistry and crystal engineering. Recently we have reported the reaction between the proton-transfer compound, (tataH)2(pydc) with metal salts Co(NO3)2.6H2O, Bi(NO3)3.5H2O, Zn(NO3)2.4H2O and Cd(NO3)2.2H2O in a 2:1 molar ratio. These reactions lead to the formation of the (tataH)2[Co(H2O)6][Co(pydc)2]2.4H2O (Aghabozorg, Attar Gharamaleki et al., 2008), (tataH)n [Bi(pydc)2(H2O)]n(Sharif et al., 2007), (tataH)2 [Zn(pydc)2].10H2O (Aghajani et al., 2006) and (tataH)2 [Cd(pydc)2] (Aghabozorg, Aghajani et al., 2006) compounds respectively. For more details and related literature see our recent review article (Aghabozorg, Manteghi et al., 2008).

The structure of the title compound is shown in Fig.1. The anion has crystallographic 2-fold symmetry. The compound contains [Ca(pydc)3]4– anion, four (tataH)+ cations and six uncoordinated water molecules. In the [Ca(pydc)3]4– anions, CaII atom is nine-coordinated by three N atoms (N1, N1a and N2) and six O atoms (O1, O1a, O3, O3a, O5 and O5a) with the range of 2.5031 (14)–2.5472 (15)Å from the carboxylate groups of three (pydc)2– groups that act as tridentate ligands. The coordination geometry around the CaII atom is distorted tricapped trigonal prism (Fig.2). Three N atoms (N1, N1a and N2) occupying three cap positions and make a flat triangle with N1—Ca1—N1a: 119.78 (8)°, N1—Ca1—N2: 120.11 (4)° and N1a—Ca1—N2: 120.11 (4)° that the sum of these angles is 360.00° and six O atoms (O1, O1a, O3, O3a, O5 and O5a) forming the trigonal prism positions.

There are various hydrogen bonds such as O—H···O, O—H···N, N—H···O and N—H···N [in the range 2.667 (2)–3.294 (3) Å] in this structure (Fig.3) and C—H···O hydrogen bonds [with D···A 3.370 (3) Å] are also present (Table 1). These extensive hydrogen bonds between [Ca(pydc)3]4– anions, (tataH)+ cations and uncoordinated water molecules play an important role in stabilization of the crystal packing.

Experimental

The proton-transfer compound, (tataH)2(pydc), was prepared by the reaction of pyridine-2,6-dicarboxylic acid (pydcH2) with 2,4,6-triamino-1,3,5-triazine (tata). The reaction between Ca(NO3)2.4H2O (118 mg, 0.5 mmol) in water (20 ml) and (tataH)2(pydc) (420 mg, 1.0 mmol) in water (20 ml), in 1:2 molar ratio gave a colorless compound after slow evaporation of the solvent at the room temperature.

Refinement

The hydrogen atoms of NH groups and also H atoms of water molecule were found in difference Fourier synthesis. The hydrogen atoms of the H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Xi), where U(Xi) the equivalent thermal parameters of the carbon or nitrogen or oxygen atom to which corresponding H atom is bonded. Distances employed in the riding model are, N-H, 0.88 Å; O-H, 0.84 Å; C-H, 0.95 Å.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The anion is located on a 2-fold axis and thus, the asymmetric unit contains one half anion, two cations and three water molecules.
Fig. 2.
A view of the distorted tricapped trigonal prism around the CaII atom.
Fig. 3.
Crystal packing with hydrogen bonds shown as dashed lines.

Crystal data

(C3H7N6)4[Ca(C7H3N1O4)3]·6H2OF000 = 2400
Mr = 1152.07Dx = 1.622 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 935 reflections
a = 17.9605 (15) Åθ = 3–29º
b = 10.1672 (9) ŵ = 0.24 mm1
c = 25.922 (2) ÅT = 100 (2) K
β = 94.467 (2)ºPrism, colourless
V = 4719.1 (7) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer6215 independent reflections
Radiation source: fine-focus sealed tube4412 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 100(2) Kθmax = 29.0º
ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→24
Tmin = 0.928, Tmax = 0.954k = −13→13
16983 measured reflectionsl = −35→35

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0392P)2 + 1P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
6215 reflectionsΔρmax = 0.51 e Å3
365 parametersΔρmin = −0.77 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ca10.00000.32225 (5)0.25000.01468 (13)
C10.17008 (12)0.2206 (2)0.21823 (8)0.0189 (4)
N10.12161 (10)0.19798 (16)0.25401 (6)0.0167 (3)
O10.08882 (8)0.38891 (14)0.18496 (5)0.0198 (3)
O1W0.25538 (11)0.3625 (2)−0.08194 (7)0.0511 (6)
H1WB0.28000.3196−0.10250.061*
H1WA0.21500.3792−0.09920.061*
O2W0.20543 (11)0.3177 (2)0.38198 (7)0.0464 (5)
H2WB0.20930.35750.41050.056*
H2WA0.17040.35020.36270.056*
O20.18167 (9)0.32683 (15)0.13789 (6)0.0225 (3)
N20.00000.5723 (2)0.25000.0160 (5)
C20.23993 (13)0.1634 (3)0.21999 (9)0.0291 (5)
H2A0.27330.18240.19430.035*
O3W0.16530 (16)0.8783 (3)0.17830 (10)0.0743 (8)
H3WB0.20940.86770.17040.089*
H3WA0.13670.91320.15500.089*
N30.16153 (10)0.53273 (18)0.07458 (7)0.0222 (4)
H3N0.16660.46630.09630.027*
O30.02261 (8)0.15716 (14)0.32346 (5)0.0203 (3)
C30.26030 (14)0.0777 (3)0.26017 (9)0.0345 (6)
H3A0.30790.03660.26240.041*
O40.10324 (9)0.02965 (15)0.37134 (6)0.0252 (3)
C40.21035 (14)0.0525 (2)0.29714 (9)0.0292 (5)
H4A0.2230−0.00630.32490.035*
N40.18475 (10)0.62366 (18)−0.00573 (7)0.0217 (4)
O50.08073 (9)0.43271 (14)0.32086 (6)0.0220 (3)
C50.14127 (12)0.1153 (2)0.29278 (8)0.0183 (4)
N50.12433 (10)0.75024 (17)0.05810 (7)0.0207 (4)
N60.22996 (11)0.41835 (19)0.01860 (8)0.0275 (4)
H6NA0.23380.35540.04190.033*
H6NB0.24770.4118−0.01200.033*
O60.11801 (9)0.61386 (15)0.36402 (6)0.0236 (3)
C60.14421 (12)0.3194 (2)0.17714 (7)0.0174 (4)
N70.13887 (10)0.83102 (18)−0.02277 (7)0.0224 (4)
H7NA0.11880.9049−0.01290.027*
H7NB0.15260.8246−0.05450.027*
C70.08494 (12)0.09839 (19)0.33279 (8)0.0171 (4)
N80.09931 (11)0.64715 (19)0.13431 (7)0.0257 (4)
H8NA0.09720.57430.15250.031*
H8NB0.09230.72190.15030.031*
C80.04098 (11)0.6393 (2)0.28661 (8)0.0175 (4)
N9−0.02526 (10)0.21627 (17)0.41916 (6)0.0189 (4)
H9NA−0.00850.21240.38820.023*
C90.04259 (14)0.7762 (2)0.28768 (9)0.0250 (5)
H9A0.07240.82150.31380.030*
C100.00000.8452 (3)0.25000.0301 (8)
H10A0.00000.93860.25000.036*
N10−0.03939 (10)0.32331 (17)0.49808 (6)0.0179 (4)
C110.08390 (11)0.5555 (2)0.32701 (8)0.0170 (4)
N11−0.07504 (10)0.09514 (17)0.48552 (7)0.0187 (4)
N120.01468 (10)0.42995 (18)0.43181 (7)0.0219 (4)
H11A0.02260.49860.45220.041 (8)*
H11B0.03040.42730.40050.033 (7)*
C120.15006 (12)0.7326 (2)0.01068 (8)0.0199 (4)
N13−0.08510 (11)0.19908 (18)0.56239 (7)0.0230 (4)
H13A−0.09830.12400.57590.039 (8)*
H13B−0.08420.26830.58280.029 (7)*
C130.12875 (12)0.6464 (2)0.08866 (8)0.0206 (4)
N14−0.06375 (11)0.00349 (19)0.40544 (7)0.0273 (4)
H14A−0.04590.01260.37500.033 (7)*
H14B−0.0830−0.07060.41580.036 (8)*
C140.19208 (12)0.5258 (2)0.02825 (8)0.0217 (4)
C15−0.01687 (11)0.3235 (2)0.45053 (8)0.0171 (4)
C16−0.06599 (12)0.2060 (2)0.51433 (8)0.0183 (4)
C17−0.05485 (11)0.1040 (2)0.43758 (8)0.0188 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ca10.0160 (3)0.0136 (3)0.0145 (3)0.0000.0015 (2)0.000
C10.0193 (11)0.0216 (10)0.0160 (9)0.0004 (8)0.0023 (8)0.0019 (8)
N10.0178 (9)0.0173 (8)0.0150 (8)−0.0001 (7)0.0020 (6)−0.0004 (6)
O10.0198 (8)0.0186 (7)0.0215 (7)0.0008 (6)0.0044 (6)0.0036 (6)
O1W0.0303 (10)0.0852 (16)0.0357 (10)0.0236 (10)−0.0111 (8)−0.0261 (10)
O2W0.0510 (12)0.0472 (12)0.0378 (10)0.0222 (10)−0.0160 (9)−0.0154 (9)
O20.0240 (8)0.0243 (8)0.0200 (7)0.0016 (6)0.0077 (6)0.0054 (6)
N20.0160 (12)0.0156 (11)0.0168 (11)0.0000.0044 (9)0.000
C20.0240 (12)0.0416 (14)0.0227 (11)0.0080 (11)0.0074 (9)0.0077 (10)
O3W0.089 (2)0.0615 (16)0.0691 (17)0.0005 (15)−0.0175 (14)−0.0047 (13)
N30.0229 (10)0.0190 (9)0.0250 (9)0.0023 (7)0.0041 (8)0.0065 (7)
O30.0202 (8)0.0223 (8)0.0187 (7)0.0012 (6)0.0037 (6)0.0027 (6)
C30.0242 (13)0.0500 (16)0.0300 (13)0.0167 (11)0.0075 (10)0.0120 (11)
O40.0322 (9)0.0242 (8)0.0197 (7)0.0030 (7)0.0047 (6)0.0077 (6)
C40.0303 (13)0.0347 (13)0.0227 (11)0.0120 (11)0.0038 (9)0.0097 (10)
N40.0190 (9)0.0227 (9)0.0230 (9)0.0009 (7)0.0003 (7)0.0035 (7)
O50.0249 (8)0.0161 (7)0.0238 (8)−0.0007 (6)−0.0048 (6)−0.0004 (6)
C50.0209 (11)0.0182 (10)0.0160 (9)0.0029 (8)0.0022 (8)0.0008 (7)
N50.0205 (9)0.0192 (9)0.0220 (9)−0.0017 (7)0.0004 (7)0.0015 (7)
N60.0297 (11)0.0248 (10)0.0290 (10)0.0063 (8)0.0080 (8)0.0063 (8)
O60.0250 (8)0.0246 (8)0.0205 (7)−0.0011 (7)−0.0031 (6)−0.0052 (6)
C60.0188 (10)0.0183 (10)0.0149 (9)−0.0030 (8)0.0006 (8)0.0002 (7)
N70.0233 (10)0.0222 (9)0.0217 (9)0.0012 (8)0.0006 (7)0.0037 (7)
C70.0231 (11)0.0117 (9)0.0167 (9)−0.0021 (8)0.0029 (8)−0.0013 (7)
N80.0339 (11)0.0198 (9)0.0241 (9)0.0005 (8)0.0065 (8)0.0028 (7)
C80.0183 (10)0.0171 (9)0.0178 (9)−0.0006 (8)0.0055 (8)−0.0011 (7)
N90.0219 (9)0.0207 (9)0.0147 (8)0.0016 (7)0.0050 (7)0.0009 (7)
C90.0322 (13)0.0194 (10)0.0228 (11)−0.0025 (9)−0.0019 (9)−0.0030 (8)
C100.044 (2)0.0179 (15)0.0273 (17)0.000−0.0032 (15)0.000
N100.0215 (9)0.0158 (8)0.0167 (8)0.0008 (7)0.0032 (7)0.0012 (6)
C110.0146 (10)0.0199 (10)0.0168 (9)−0.0012 (8)0.0034 (7)−0.0010 (7)
N110.0197 (9)0.0173 (8)0.0193 (8)−0.0011 (7)0.0038 (7)−0.0011 (7)
N120.0249 (10)0.0214 (9)0.0200 (9)−0.0006 (8)0.0068 (7)0.0025 (7)
C120.0144 (10)0.0228 (10)0.0217 (10)−0.0031 (8)−0.0035 (8)0.0027 (8)
N130.0356 (11)0.0160 (9)0.0182 (8)−0.0043 (8)0.0071 (8)−0.0012 (7)
C130.0185 (10)0.0201 (10)0.0227 (10)−0.0027 (8)−0.0004 (8)0.0012 (8)
N140.0353 (11)0.0258 (10)0.0221 (9)−0.0079 (9)0.0106 (8)−0.0068 (8)
C140.0152 (10)0.0234 (11)0.0265 (11)−0.0008 (8)0.0009 (8)0.0033 (8)
C150.0150 (10)0.0172 (9)0.0189 (9)0.0024 (8)0.0004 (7)0.0021 (8)
C160.0170 (10)0.0183 (10)0.0197 (10)0.0016 (8)0.0014 (8)0.0009 (8)
C170.0155 (10)0.0206 (10)0.0204 (10)0.0015 (8)0.0020 (8)−0.0013 (8)

Geometric parameters (Å, °)

Ca1—O12.5031 (14)O5—C111.259 (2)
Ca1—O1i2.5032 (14)C5—C71.514 (3)
Ca1—O5i2.5145 (15)N5—C131.319 (3)
Ca1—O52.5145 (15)N5—C121.358 (3)
Ca1—N1i2.5184 (18)N6—C141.321 (3)
Ca1—N12.5184 (18)N6—H6NA0.8800
Ca1—N22.542 (2)N6—H6NB0.8798
Ca1—O3i2.5472 (15)O6—C111.248 (2)
Ca1—O32.5472 (15)N7—C121.329 (3)
C1—N11.340 (3)N7—H7NA0.8800
C1—C21.380 (3)N7—H7NB0.8800
C1—C61.511 (3)N8—C131.333 (3)
N1—C51.337 (3)N8—H8NA0.8800
O1—C61.250 (2)N8—H8NB0.8800
O1W—H1WB0.8400C8—C91.393 (3)
O1W—H1WA0.8400C8—C111.514 (3)
O2W—H2WB0.8400N9—C151.362 (3)
O2W—H2WA0.8400N9—C171.361 (3)
O2—C61.265 (2)N9—H9NA0.8800
N2—C8i1.340 (2)C9—C101.384 (3)
N2—C81.340 (2)C9—H9A0.9500
C2—C31.385 (3)C10—C9i1.384 (3)
C2—H2A0.9500C10—H10A0.9500
O3W—H3WB0.8400N10—C151.327 (3)
O3W—H3WA0.8401N10—C161.363 (3)
N3—C131.360 (3)N11—C171.324 (3)
N3—C141.360 (3)N11—C161.355 (3)
N3—H3N0.8800N12—C151.330 (3)
O3—C71.275 (3)N12—H11A0.8801
C3—C41.386 (3)N12—H11B0.8799
C3—H3A0.9500N13—C161.319 (3)
O4—C71.243 (2)N13—H13A0.8800
C4—C51.392 (3)N13—H13B0.8799
C4—H4A0.9500N14—C171.320 (3)
N4—C141.329 (3)N14—H14A0.8800
N4—C121.356 (3)N14—H14B0.8800
O1—Ca1—O1i148.58 (7)N1—C5—C4122.08 (19)
O1—Ca1—O5i75.43 (5)N1—C5—C7115.77 (18)
O1i—Ca1—O5i90.55 (5)C4—C5—C7122.11 (19)
O1—Ca1—O590.55 (5)C13—N5—C12115.43 (19)
O1i—Ca1—O575.43 (5)C14—N6—H6NA119.0
O5i—Ca1—O5126.94 (7)C14—N6—H6NB117.5
O1—Ca1—N1i134.76 (5)H6NA—N6—H6NB123.4
O1i—Ca1—N1i64.37 (5)O1—C6—O2125.19 (19)
O5i—Ca1—N1i75.23 (5)O1—C6—C1117.84 (17)
O5—Ca1—N1i134.68 (5)O2—C6—C1116.96 (18)
O1—Ca1—N164.37 (5)C12—N7—H7NA119.8
O1i—Ca1—N1134.76 (5)C12—N7—H7NB121.1
O5i—Ca1—N1134.68 (5)H7NA—N7—H7NB119.1
O5—Ca1—N175.23 (5)O4—C7—O3126.11 (19)
N1i—Ca1—N1119.78 (8)O4—C7—C5117.75 (19)
O1—Ca1—N274.29 (4)O3—C7—C5116.14 (17)
O1i—Ca1—N274.29 (4)C13—N8—H8NA120.4
O5i—Ca1—N263.47 (4)C13—N8—H8NB120.4
O5—Ca1—N263.47 (4)H8NA—N8—H8NB117.4
N1i—Ca1—N2120.11 (4)N2—C8—C9122.1 (2)
N1—Ca1—N2120.11 (4)N2—C8—C11115.19 (18)
O1—Ca1—O3i75.39 (5)C9—C8—C11122.70 (19)
O1i—Ca1—O3i127.53 (5)C15—N9—C17119.35 (17)
O5i—Ca1—O3i72.48 (5)C15—N9—H9NA123.4
O5—Ca1—O3i152.84 (5)C17—N9—H9NA117.0
N1i—Ca1—O3i63.34 (5)C10—C9—C8118.9 (2)
N1—Ca1—O3i77.73 (5)C10—C9—H9A120.6
N2—Ca1—O3i131.22 (3)C8—C9—H9A120.6
O1—Ca1—O3127.53 (5)C9i—C10—C9119.1 (3)
O1i—Ca1—O375.39 (5)C9i—C10—H10A120.5
O5i—Ca1—O3152.84 (5)C9—C10—H10A120.5
O5—Ca1—O372.48 (5)C15—N10—C16115.35 (18)
N1i—Ca1—O377.73 (5)O6—C11—O5125.73 (19)
N1—Ca1—O363.34 (5)O6—C11—C8117.19 (18)
N2—Ca1—O3131.22 (3)O5—C11—C8117.06 (18)
O3i—Ca1—O397.56 (7)C17—N11—C16115.51 (18)
N1—C1—C2122.86 (19)C15—N12—H11A118.7
N1—C1—C6114.91 (18)C15—N12—H11B119.2
C2—C1—C6122.16 (19)H11A—N12—H11B121.9
C5—N1—C1118.70 (18)N7—C12—N4117.41 (19)
C5—N1—Ca1121.61 (13)N7—C12—N5116.5 (2)
C1—N1—Ca1119.56 (13)N4—C12—N5126.05 (19)
C6—O1—Ca1120.86 (12)C16—N13—H13A121.4
H1WB—O1W—H1WA104.1C16—N13—H13B122.1
H2WB—O2W—H2WA109.9H13A—N13—H13B116.5
C8i—N2—C8118.9 (2)N5—C13—N8121.3 (2)
C8i—N2—Ca1120.53 (12)N5—C13—N3121.8 (2)
C8—N2—Ca1120.53 (12)N8—C13—N3116.96 (19)
C3—C2—C1118.4 (2)C17—N14—H14A116.7
C3—C2—H2A120.8C17—N14—H14B120.1
C1—C2—H2A120.8H14A—N14—H14B123.0
H3WB—O3W—H3WA114.4N6—C14—N4121.3 (2)
C13—N3—C14119.60 (18)N6—C14—N3117.3 (2)
C13—N3—H3N120.4N4—C14—N3121.4 (2)
C14—N3—H3N119.8N10—C15—N12120.64 (19)
C7—O3—Ca1122.48 (12)N10—C15—N9121.73 (18)
C2—C3—C4119.2 (2)N12—C15—N9117.63 (18)
C2—C3—H3A120.4N13—C16—N11116.54 (19)
C4—C3—H3A120.4N13—C16—N10117.51 (19)
C3—C4—C5118.7 (2)N11—C16—N10125.96 (18)
C3—C4—H4A120.7N14—C17—N11120.7 (2)
C5—C4—H4A120.7N14—C17—N9117.33 (19)
C14—N4—C12115.36 (18)N11—C17—N9121.95 (19)
C11—O5—Ca1123.58 (13)
C2—C1—N1—C5−0.8 (3)N1—Ca1—O5—C11138.44 (17)
C6—C1—N1—C5−177.72 (18)N2—Ca1—O5—C113.08 (14)
C2—C1—N1—Ca1175.25 (18)O3i—Ca1—O5—C11132.90 (16)
C6—C1—N1—Ca1−1.6 (2)O3—Ca1—O5—C11−155.35 (17)
O1—Ca1—N1—C5171.11 (17)C1—N1—C5—C40.2 (3)
O1i—Ca1—N1—C522.09 (19)Ca1—N1—C5—C4−175.81 (17)
O5i—Ca1—N1—C5−158.97 (14)C1—N1—C5—C7177.82 (18)
O5—Ca1—N1—C573.20 (15)Ca1—N1—C5—C71.8 (2)
N1i—Ca1—N1—C5−60.19 (14)C3—C4—C5—N10.4 (4)
N2—Ca1—N1—C5119.81 (14)C3—C4—C5—C7−177.1 (2)
O3i—Ca1—N1—C5−109.38 (16)Ca1—O1—C6—O2162.52 (16)
O3—Ca1—N1—C5−4.32 (14)Ca1—O1—C6—C1−19.1 (2)
O1—Ca1—N1—C1−4.88 (14)N1—C1—C6—O113.5 (3)
O1i—Ca1—N1—C1−153.89 (14)C2—C1—C6—O1−163.4 (2)
O5i—Ca1—N1—C125.05 (18)N1—C1—C6—O2−167.97 (18)
O5—Ca1—N1—C1−102.78 (15)C2—C1—C6—O215.1 (3)
N1i—Ca1—N1—C1123.83 (16)Ca1—O3—C7—O4170.52 (16)
N2—Ca1—N1—C1−56.17 (16)Ca1—O3—C7—C5−9.4 (2)
O3i—Ca1—N1—C174.64 (15)N1—C5—C7—O4−175.02 (18)
O3—Ca1—N1—C1179.70 (17)C4—C5—C7—O42.6 (3)
O1i—Ca1—O1—C6148.51 (15)N1—C5—C7—O34.9 (3)
O5i—Ca1—O1—C6−145.46 (15)C4—C5—C7—O3−177.5 (2)
O5—Ca1—O1—C686.33 (15)C8i—N2—C8—C9−0.29 (15)
N1i—Ca1—O1—C6−94.42 (16)Ca1—N2—C8—C9179.71 (15)
N1—Ca1—O1—C613.04 (14)C8i—N2—C8—C11178.57 (19)
N2—Ca1—O1—C6148.51 (15)Ca1—N2—C8—C11−1.43 (19)
O3i—Ca1—O1—C6−70.16 (15)N2—C8—C9—C100.6 (3)
O3—Ca1—O1—C618.19 (17)C11—C8—C9—C10−178.21 (17)
O1—Ca1—N2—C8i80.76 (10)C8—C9—C10—C9i−0.27 (14)
O1i—Ca1—N2—C8i−99.24 (10)Ca1—O5—C11—O6173.48 (15)
O5i—Ca1—N2—C8i−0.53 (11)Ca1—O5—C11—C8−5.0 (2)
O5—Ca1—N2—C8i179.47 (11)N2—C8—C11—O6−174.49 (16)
N1i—Ca1—N2—C8i−52.29 (11)C9—C8—C11—O64.4 (3)
N1—Ca1—N2—C8i127.71 (11)N2—C8—C11—O54.1 (3)
O3i—Ca1—N2—C8i27.26 (11)C9—C8—C11—O5−177.1 (2)
O3—Ca1—N2—C8i−152.74 (11)C14—N4—C12—N7−177.40 (19)
O1—Ca1—N2—C8−99.24 (10)C14—N4—C12—N51.4 (3)
O1i—Ca1—N2—C880.76 (10)C13—N5—C12—N7172.95 (19)
O5i—Ca1—N2—C8179.47 (11)C13—N5—C12—N4−5.9 (3)
O5—Ca1—N2—C8−0.53 (11)C12—N5—C13—N8−173.9 (2)
N1i—Ca1—N2—C8127.71 (11)C12—N5—C13—N34.3 (3)
N1—Ca1—N2—C8−52.29 (11)C14—N3—C13—N51.3 (3)
O3i—Ca1—N2—C8−152.74 (11)C14—N3—C13—N8179.6 (2)
O3—Ca1—N2—C827.26 (11)C12—N4—C14—N6−174.6 (2)
N1—C1—C2—C30.8 (4)C12—N4—C14—N34.7 (3)
C6—C1—C2—C3177.5 (2)C13—N3—C14—N6173.2 (2)
O1—Ca1—O3—C72.23 (17)C13—N3—C14—N4−6.2 (3)
O1i—Ca1—O3—C7−153.52 (15)C16—N10—C15—N12−175.54 (19)
O5i—Ca1—O3—C7145.59 (14)C16—N10—C15—N94.7 (3)
O5—Ca1—O3—C7−74.48 (15)C17—N9—C15—N10−2.6 (3)
N1i—Ca1—O3—C7140.11 (15)C17—N9—C15—N12177.67 (18)
N1—Ca1—O3—C77.43 (14)C17—N11—C16—N13−179.39 (19)
N2—Ca1—O3—C7−100.42 (14)C17—N11—C16—N100.9 (3)
O3i—Ca1—O3—C779.58 (14)C15—N10—C16—N13176.27 (19)
C1—C2—C3—C4−0.2 (4)C15—N10—C16—N11−4.0 (3)
C2—C3—C4—C5−0.4 (4)C16—N11—C17—N14−177.5 (2)
O1—Ca1—O5—C1175.17 (16)C16—N11—C17—N91.6 (3)
O1i—Ca1—O5—C11−76.38 (16)C15—N9—C17—N14178.31 (19)
O5i—Ca1—O5—C113.08 (14)C15—N9—C17—N11−0.8 (3)
N1i—Ca1—O5—C11−104.08 (16)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2ii0.841.912.710 (3)160
O1W—H1WA···O6iii0.841.922.751 (3)170
O2W—H2WB···N4iv0.842.263.022 (3)151
N3—H3N···O20.881.792.667 (2)176
O2W—H2WA···O50.842.052.888 (3)175
O3W—H3WB···O2Wv0.842.182.963 (3)154
O3W—H3WA···N14vi0.842.173.007 (3)180
N6—H6NA···O1Wii0.882.453.294 (3)162
N6—H6NB···O1W0.881.902.740 (3)160
N7—H7NA···N11vi0.882.223.103 (3)176
N7—H7NB···O2Wiii0.882.443.205 (3)146
N7—H7NB···O4iii0.882.533.111 (2)124
N8—H8NA···O10.882.072.948 (2)172
N12—H11A···N10vii0.882.233.109 (2)178
N12—H11B···O50.882.323.196 (2)175
N8—H8NB···O3W0.882.152.832 (4)134
N9—H9NA···O30.881.892.754 (2)165
N13—H13A···O4viii0.882.082.925 (2)160
N13—H13B···O6vii0.881.962.790 (2)157
N14—H14A···O30.882.393.143 (2)144
N14—H14B···N5ix0.882.102.978 (3)178
C4—H4A···O2x0.952.553.370 (3)145

Symmetry codes: (ii) −x+1/2, −y+1/2, −z; (iii) x, −y+1, z−1/2; (iv) x, −y+1, z+1/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x, y+1, −z+1/2; (vii) −x, −y+1, −z+1; (viii) −x, −y, −z+1; (ix) −x, y−1, −z+1/2; (x) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2249).

References

  • Aghabozorg, H., Aghajani, Z. & Sharif, M. A. (2006). Acta Cryst. E62, m1930–m1932.
  • Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187–m188.
  • Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc.5, 184-227.
  • Aghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). Acta Cryst. E62, m830–m832.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599–m1601.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography