PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1062.
Published online 2008 July 26. doi:  10.1107/S1600536808022812
PMCID: PMC2961975

A second polymorph of aqua­(2,9-di­methyl-1,10-phenanthroline-κ2 N,N′)bis­(formato-κO)copper(II)

Abstract

A new monoclinic polymorphic form of the title compound, [Cu(HCO2)2(C14H12N2)(H2O)], is described. It differs from the first ortho­rhom­bic polymorph [Pan, Lin & Zheng (2005 [triangle]). Z. Kristallogr. New Cryst. Struct. 220, 495–496] in the deviation of the Cu atom relative to the plane of the 2,9-dimethyl-1,10-phenanthroline (dmp) ligand. In the present structure, the Cu atom is shifted from the mean plane of the dmp ligand by only 0.005 (1) Å, compared with 0.318 (6) Å in the ortho­rhom­bic form. Hydrogen-bonding and π–π stacking inter­actions (mean inter­planar distance of 3.59 Å in the title compound) in the two different polymorphs are both essential to the supra­molecular assembly.

Related literature

For the orthorhombic polymorph, see: Pan et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1062-scheme1.jpg

Experimental

Crystal data

  • [Cu(HCO2)2(C14H12N2)(H2O)]
  • M r = 379.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1062-efi1.jpg
  • a = 10.669 (2) Å
  • b = 7.7677 (16) Å
  • c = 19.338 (4) Å
  • β = 94.22 (3)°
  • V = 1598.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.40 mm−1
  • T = 295 (2) K
  • 0.26 × 0.17 × 0.09 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: multi-scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.749, T max = 0.879
  • 15099 measured reflections
  • 3632 independent reflections
  • 3202 reflections with I > 2σ(I)
  • R int = 0.019
  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.072
  • S = 1.06
  • 3632 reflections
  • 219 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022812/fj2128sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022812/fj2128Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

supplementary crystallographic information

Comment

We reported a structure of the copper-dmp complex aqua-(2,9-dimethyl-1,10-phenanthroline-κ2N:N')-diromato-copper(II) previously, which crystallizes in space group Pna21 (Pan, et al.,2005). On repeating the experiment recently, to our surprise, we found a new polyporph, (I), that had crystallized in the space group P21/c.

The crystal structure of the title compound is very similar to the previously reported complex, built up by the [Cu(dmp)(H2O)(HCOO)2] complex molecules. The Cu atoms are each square pyramidally coordinated by two N atoms of one dmp ligand, three O atoms of two formate anions and one water molecule with the N2 atom of the dmp ligand at the apical position. The apical and basal Cu—N bond distances are 2.280 (1) and 2.033 (2) Å, respectively. The Cu—O bond distances to the formate anions are 1.945 (1) and 1.955 (1) Å, slightly longer than that to the water molecule (1.973 (1) Å). Suggesting that the formate anions possess better coordinating capability to the water molecule in the structure, which also show no significant difference from the isomer crystal structure that reported by us. The Cu atom is shifted by 0.153 (1) Å from the equatorial plane through N1, O1, O3 and O5 atoms towards the apical N2 atom. Through the intermolecular hydrogen bond the complex molecules are link into double chains with the chelating dmp ligands extending parallelly on one side along [010]. The substituted phenanthroline ligands of one double chain protrude into the grooves between adjacent aromatic planes of the neighboring double chain, yielding two-dimensional layers parallel to (100). It is found that the assembly of the double chains is due to interchain π-π stacking interactions between the dmp ligands (mean interplanar distance: 3.59 Å).

Experimental

Dropwise addition of 2.0 ml (1.0 M) Na2CO3 to an aqueous solution of 0.075 g (0.442 mmol) CuCl2.2H2O in 5.0 ml H2O yielded pale blue deposit, which was separated by centrifugation and washed with doubly distilled water until no Cl- anions are detectable in the supernatant. The precipitate was then added to a solution of 0.100 g (0.442 mmol) 2,9-dimethyl-1,10-phenanthroline in a mixed solvent consisting of 15 ml H2O and 15 ml me thanol. To the mixture 1.77 ml (1.0 M) formic acid was dropped and the precipitate was slowly dissolved under continuous stirring. The resulting blue solution was allowed to stand at room temperature, and slow evaporation for 10 days afforded blue plate crystals.

Refinement

H atoms attached to C atoms of the dmp ligand were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.96 Å, and Uiso(H) values set at 1.2 Ueq(C) and 1.5 Ueq(C), respectively. The H atoms of the water molecule and formate anions were located from difference Fourier maps.

Figures

Fig. 1.
ORTEP view of the title compound. The displacement ellipsoids are drawn at 40% probability level.
Fig. 2.
A perspective view of the crystal structure of (I), with hydrogen bonds shown as dashed lines.

Crystal data

[Cu(HCO2)2(C14H12N2)(H2O)]F000 = 780
Mr = 379.85Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.669 (2) Åθ = 5.0–12.5º
b = 7.7677 (16) ŵ = 1.40 mm1
c = 19.338 (4) ÅT = 295 (2) K
β = 94.22 (3)ºPlate, blue
V = 1598.3 (6) Å30.26 × 0.17 × 0.09 mm
Z = 4

Data collection

Bruker P4 diffractometerRint = 0.019
Radiation source: fine-focus sealed tubeθmax = 27.5º
Monochromator: graphiteθmin = 3.3º
T = 295(2) Kh = −13→13
θ/2θ scansk = −10→9
Absorption correction: multi-scan(XSCANS; Siemens, 1996)l = −24→25
Tmin = 0.749, Tmax = 0.8793 standard reflections
15099 measured reflections every 97 reflections
3632 independent reflections intensity decay: none
3202 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.072  w = 1/[σ2(Fo2) + (0.0413P)2 + 0.5201P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3632 reflectionsΔρmax = 0.35 e Å3
219 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.209657 (18)0.90493 (2)0.156116 (9)0.02440 (7)
N10.21922 (12)0.80402 (17)0.05966 (6)0.0257 (3)
N20.42113 (13)0.89494 (17)0.14606 (7)0.0275 (3)
C10.11886 (17)0.7632 (2)0.01841 (9)0.0325 (4)
C20.1317 (2)0.6999 (3)−0.04910 (10)0.0472 (5)
H2A0.06050.6741−0.07780.057*
C30.2471 (2)0.6765 (3)−0.07224 (10)0.0508 (5)
H3A0.25520.6332−0.11650.061*
C40.35505 (19)0.7178 (3)−0.02912 (9)0.0393 (4)
C50.4803 (2)0.6986 (3)−0.04949 (11)0.0541 (6)
H5A0.49290.6540−0.09310.065*
C60.5804 (2)0.7435 (3)−0.00711 (11)0.0537 (6)
H6A0.66090.7298−0.02170.064*
C70.56433 (17)0.8120 (3)0.05998 (10)0.0397 (4)
C80.66470 (19)0.8661 (3)0.10598 (12)0.0511 (5)
H8A0.74680.85770.09310.061*
C90.64241 (19)0.9302 (3)0.16884 (12)0.0478 (5)
H9A0.70910.96590.19920.057*
C100.51845 (17)0.9430 (2)0.18838 (9)0.0350 (4)
C110.44274 (15)0.8321 (2)0.08260 (8)0.0289 (3)
C120.33615 (16)0.7831 (2)0.03694 (8)0.0281 (3)
C13−0.00801 (18)0.7856 (3)0.04536 (10)0.0438 (4)
H13A−0.03020.68310.06940.066*
H13B−0.06910.80660.00730.066*
H13C−0.00620.88160.07670.066*
C140.4920 (2)1.0068 (3)0.25888 (10)0.0537 (6)
H14A0.42431.08840.25470.081*
H14B0.56591.06140.28020.081*
H14C0.46910.91160.28700.081*
O10.18364 (13)0.98991 (18)0.24857 (6)0.0408 (3)
O2−0.02000 (15)1.0452 (3)0.22488 (8)0.0613 (4)
C150.0760 (2)1.0407 (3)0.26275 (10)0.0471 (5)
O30.18495 (13)1.12747 (15)0.10994 (6)0.0365 (3)
O40.18327 (18)1.41073 (16)0.10823 (8)0.0530 (4)
C160.19793 (18)1.2723 (2)0.13792 (9)0.0360 (4)
O50.19568 (12)0.67025 (15)0.19376 (6)0.0344 (3)
H5B0.19580.58340.16360.051*
H5C0.14160.64520.22420.054*
H150.07511.09040.31110.052*
H160.23831.27050.18520.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.02683 (11)0.02277 (11)0.02410 (11)0.00161 (7)0.00524 (7)−0.00126 (7)
N10.0280 (7)0.0227 (6)0.0263 (6)−0.0003 (5)0.0021 (5)−0.0001 (5)
N20.0267 (7)0.0283 (7)0.0276 (6)−0.0012 (5)0.0032 (5)0.0011 (5)
C10.0353 (9)0.0304 (8)0.0313 (8)−0.0023 (7)−0.0011 (7)−0.0003 (7)
C20.0495 (12)0.0554 (12)0.0350 (9)−0.0055 (10)−0.0086 (8)−0.0096 (9)
C30.0627 (14)0.0601 (13)0.0297 (9)−0.0010 (11)0.0040 (9)−0.0158 (9)
C40.0467 (11)0.0421 (10)0.0300 (8)0.0022 (8)0.0093 (7)−0.0060 (8)
C50.0587 (14)0.0690 (15)0.0373 (10)0.0073 (11)0.0227 (9)−0.0110 (10)
C60.0430 (12)0.0737 (15)0.0474 (11)0.0080 (10)0.0234 (9)−0.0016 (11)
C70.0319 (9)0.0479 (11)0.0408 (9)0.0023 (8)0.0126 (7)0.0052 (9)
C80.0246 (9)0.0722 (14)0.0575 (12)−0.0005 (9)0.0102 (8)0.0079 (11)
C90.0306 (10)0.0592 (13)0.0526 (12)−0.0096 (9)−0.0033 (8)0.0047 (10)
C100.0323 (9)0.0346 (9)0.0374 (9)−0.0041 (7)−0.0018 (7)0.0021 (7)
C110.0292 (8)0.0288 (8)0.0295 (7)0.0007 (6)0.0077 (6)0.0020 (7)
C120.0327 (8)0.0264 (7)0.0258 (7)0.0020 (6)0.0070 (6)0.0006 (6)
C130.0308 (9)0.0564 (12)0.0434 (10)−0.0056 (9)−0.0033 (8)0.0005 (9)
C140.0484 (12)0.0687 (15)0.0426 (11)−0.0057 (11)−0.0066 (9)−0.0160 (11)
O10.0475 (8)0.0463 (8)0.0293 (6)0.0104 (6)0.0073 (5)−0.0055 (6)
O20.0465 (9)0.0904 (13)0.0485 (8)0.0135 (9)0.0128 (7)−0.0072 (9)
C150.0577 (13)0.0534 (12)0.0319 (9)0.0127 (10)0.0159 (9)−0.0061 (9)
O30.0529 (8)0.0249 (6)0.0319 (6)0.0037 (5)0.0045 (5)0.0000 (5)
O40.0859 (12)0.0259 (7)0.0479 (8)0.0012 (7)0.0098 (8)0.0004 (6)
C160.0443 (10)0.0292 (9)0.0346 (8)−0.0012 (7)0.0028 (7)−0.0013 (7)
O50.0415 (7)0.0271 (6)0.0359 (6)−0.0028 (5)0.0122 (5)0.0032 (5)

Geometric parameters (Å, °)

Cu—O11.9450 (12)C7—C111.408 (2)
Cu—O31.9546 (12)C8—C91.351 (3)
Cu—O51.9726 (12)C8—H8A0.9300
Cu—N12.0328 (13)C9—C101.405 (3)
Cu—N22.2801 (15)C9—H9A0.9300
N1—C11.326 (2)C10—C141.497 (3)
N1—C121.363 (2)C11—C121.439 (2)
N2—C101.327 (2)C13—H13A0.9600
N2—C111.356 (2)C13—H13B0.9600
C1—C21.411 (2)C13—H13C0.9600
C1—C131.496 (3)C14—H14A0.9600
C2—C31.353 (3)C14—H14B0.9600
C2—H2A0.9300C14—H14C0.9600
C3—C41.408 (3)O1—C151.264 (2)
C3—H3A0.9300O2—C151.215 (3)
C4—C121.403 (2)C15—H151.0122
C4—C51.429 (3)O3—C161.252 (2)
C5—C61.343 (3)O4—C161.223 (2)
C5—H5A0.9300C16—H160.9821
C6—C71.424 (3)O5—H5B0.8914
C6—H6A0.9300O5—H5C0.8760
C7—C81.405 (3)
O1—Cu—O395.53 (6)C9—C8—H8A119.9
O1—Cu—O587.40 (6)C7—C8—H8A119.9
O1—Cu—N1174.06 (6)C8—C9—C10119.97 (19)
O1—Cu—N2107.40 (6)C8—C9—H9A120.0
O3—Cu—O5167.05 (6)C10—C9—H9A120.0
O3—Cu—N186.33 (5)N2—C10—C9121.54 (18)
O3—Cu—N295.28 (6)N2—C10—C14117.62 (17)
O5—Cu—N189.57 (5)C9—C10—C14120.81 (18)
O5—Cu—N295.87 (5)N2—C11—C7122.89 (16)
N1—Cu—N277.98 (6)N2—C11—C12118.11 (14)
C1—N1—C12119.71 (14)C7—C11—C12119.01 (15)
C1—N1—Cu123.47 (11)N1—C12—C4122.22 (16)
C12—N1—Cu116.80 (11)N1—C12—C11118.15 (14)
C10—N2—C11118.80 (15)C4—C12—C11119.63 (16)
C10—N2—Cu132.20 (12)C1—C13—H13A109.5
C11—N2—Cu108.95 (11)C1—C13—H13B109.5
N1—C1—C2120.71 (17)H13A—C13—H13B109.5
N1—C1—C13118.29 (15)C1—C13—H13C109.5
C2—C1—C13121.00 (17)H13A—C13—H13C109.5
C3—C2—C1120.38 (18)H13B—C13—H13C109.5
C3—C2—H2A119.8C10—C14—H14A109.5
C1—C2—H2A119.8C10—C14—H14B109.5
C2—C3—C4119.86 (17)H14A—C14—H14B109.5
C2—C3—H3A120.1C10—C14—H14C109.5
C4—C3—H3A120.1H14A—C14—H14C109.5
C12—C4—C3117.10 (18)H14B—C14—H14C109.5
C12—C4—C5119.28 (18)C15—O1—Cu119.93 (13)
C3—C4—C5123.61 (18)O2—C15—O1128.13 (18)
C6—C5—C4121.48 (18)O2—C15—H15118.8
C6—C5—H5A119.3O1—C15—H15112.9
C4—C5—H5A119.3C16—O3—Cu126.20 (12)
C5—C6—C7120.61 (18)O4—C16—O3125.51 (17)
C5—C6—H6A119.7O4—C16—H16118.8
C7—C6—H6A119.7O3—C16—H16114.6
C8—C7—C11116.55 (17)Cu—O5—H5B117.0
C8—C7—C6123.44 (18)Cu—O5—H5C121.6
C11—C7—C6119.99 (19)H5B—O5—H5C107.7
C9—C8—C7120.23 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5C···O2i0.881.862.714 (2)166
O5—H5B···O4ii0.891.722.605 (2)175

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2128).

References

  • Pan, J. G., Lin, J. L. & Zheng, Y. Q. (2005). Z. Kristallogr. New Cryst. Struct 220, 495–496.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography