PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1061.
Published online 2008 July 23. doi:  10.1107/S1600536808022927
PMCID: PMC2961974

[3]Ferrocenophan-1-one

Abstract

The crystal structure of [3]ferrocenophan-1-one, [Fe(C13H12O)], has been redetermined at 150 K. The tethered cyclo­penta­dienyl (Cp) rings are tilted by 9.39 (18)° and assume an eclipsed conformation. The 1-oxopropane-1,3-diyl bridge has a pseudo-envelope conformation with the C=O group deviating by as much as 22.5 (2)° from coplanarity with its attached Cp ring.

Related literature

For an overview of the chemistry of ferrocene, see: Štěpnička (2008 [triangle]). For the preparation of the title compound, see: Turbitt & Watts (1972 [triangle]). For its crystal structure at room temperature, see: Jones et al. (1965 [triangle]). For an introductory review on the chemistry of ferrocenophanes with carbon bridges, see: Heo & Lee (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1061-scheme1.jpg

Experimental

Crystal data

  • [Fe(C13H12O)]
  • M r = 240.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1061-efi1.jpg
  • a = 5.77450 (10) Å
  • b = 7.3303 (2) Å
  • c = 22.8596 (6) Å
  • β = 93.242 (2)°
  • V = 966.07 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.52 mm−1
  • T = 150 (2) K
  • 0.38 × 0.30 × 0.28 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.579, T max = 0.660
  • 13397 measured reflections
  • 2223 independent reflections
  • 2102 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.096
  • S = 1.31
  • 2223 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON and publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022927/dn2366sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022927/dn2366Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is a part of the long-term research project supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. MSM0021620857).

supplementary crystallographic information

Comment

The chemistry of ferrocene has received considerable attention because of its widespread applications ranging from material science to biomedicine. A particularly successful area is undoubtedly catalysis with ferrocene ligands (Štěpnička, 2008). A number of ferrocene ligands has been prepared a studied as ligands for transtion metal-mediated reactions. Among the numerous ligands reported to date, a specific class is constituted by the donors whose cyclopentadienyl (Cp) rings are interconnected with a linking group (i.e., ferrocenophane-type compounds (Heo & Lee, 1999)). [3]ferrocenophan-1-one (I) represent a convenient entry to such donors (Štěpnička, 2008). Because the crystal structure of I has been reported already in the middle 1960's (Jones et al., 1965), we have redetermined it at 150 K in order to obtain more precise structural information.

The molecular structure of I (Figure 1) is rather unexceptional as far as interatomic distances and angles concerns. Because of spatial constraints imposed by the 1-oxapropan-1,3-diyl linker, the Cp rings are tilted by 9.39 (18)° and adopt a near-to-eclipsed conformation characterized by the torsion angle C(1)—Cg(1)—Cg(2)—C(6) of -5.6 (2)°, where Cg(1) and Cg(2) are the centroids of the Cp rings C(1–5) and C(6–10), respectively. The iron—Cg distances in I are: Fe1—Cg(1) 1.6399 (14) Å and Fe1—Cg(2) 1.6463 (14) Å. The aliphatic bridge assumes a pseudoenvelope conformation and its C═O bond (C11—O 1.2012 (4) Å) is displaced above its bonding Cp ring, the angle subtended by the C?O vector and the Cp ring being 22.5 (2)°.

Experimental

The title compound was synthesized by acylation of ferrocene with acryloyl chloride in the presence of AlCl3 (Turbitt & Watts, 1972) and characterized by 1H and 13C{1H} NMR spectra. Orange-red crystals suitable for X-ray diffraction analysis were obtained by liquid-phase diffusion of hexane into a solution of the compound in dichloromethane.

Refinement

All H-atoms were included in calculated positions and refined with d(C—H) = 0.93 Å (aromatic) and 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Side (a) and top (b) views of I showing the atom numbering scheme and displacement ellipsoids for the non-H atoms at the 30% probability level.

Crystal data

[Fe(C13H12O)]F000 = 496
Mr = 240.08Dx = 1.651 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2391 reflections
a = 5.77450 (10) Åθ = 0.4–27.5º
b = 7.3303 (2) ŵ = 1.52 mm1
c = 22.8596 (6) ÅT = 150 (2) K
β = 93.242 (2)ºBlock, orange–red
V = 966.07 (4) Å30.38 × 0.30 × 0.28 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2223 independent reflections
Radiation source: fine-focus sealed tube2102 reflections with I > 2σ(I)
Monochromator: horizontal graphite crystalRint = 0.032
Detector resolution: 9.091 pixels mm-1θmax = 27.5º
T = 150(2) Kθmin = 1.8º
ω and π scans to fill the Ewald sphereh = −7→7
Absorption correction: multi-scan(SORTAV; Blessing, 1995)k = −9→9
Tmin = 0.579, Tmax = 0.660l = −29→29
13397 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.096  w = 1/[σ2(Fo2) + 2.5298P] where P = (Fo2 + 2Fc2)/3
S = 1.31(Δ/σ)max < 0.001
2223 reflectionsΔρmax = 0.53 e Å3
136 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.18818 (7)0.12608 (6)0.151598 (17)0.01753 (13)
O10.6106 (4)0.4906 (4)0.09480 (11)0.0324 (5)
C10.3394 (5)0.3716 (4)0.15759 (12)0.0187 (5)
C20.1123 (5)0.3776 (4)0.18047 (12)0.0206 (6)
H2−0.01170.44910.16640.025*
C30.1121 (6)0.2545 (4)0.22849 (13)0.0246 (6)
H3−0.01270.23240.25150.029*
C40.3337 (6)0.1708 (4)0.23551 (13)0.0263 (7)
H40.37810.08370.26350.032*
C50.4752 (5)0.2428 (4)0.19256 (13)0.0226 (6)
H50.62930.21220.18770.027*
C60.1582 (5)0.0986 (4)0.06275 (12)0.0212 (6)
C7−0.0636 (5)0.0829 (4)0.08711 (13)0.0228 (6)
H7−0.19120.15730.07820.027*
C8−0.0570 (5)−0.0656 (4)0.12733 (14)0.0242 (6)
H8−0.1786−0.10440.14930.029*
C90.1688 (6)−0.1445 (4)0.12808 (14)0.0255 (6)
H90.2211−0.24340.15060.031*
C100.3001 (5)−0.0440 (4)0.08799 (13)0.0240 (6)
H100.4530−0.06750.07960.029*
C110.4118 (5)0.4452 (4)0.10113 (13)0.0209 (6)
C120.2345 (6)0.4393 (4)0.04970 (13)0.0238 (6)
H12A0.27330.52910.02060.029*
H12B0.08190.46800.06280.029*
C130.2334 (6)0.2466 (4)0.02244 (13)0.0250 (6)
H13A0.13030.2467−0.01260.030*
H13B0.38820.21890.01070.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0204 (2)0.0150 (2)0.0171 (2)0.00020 (17)−0.00002 (14)−0.00078 (16)
O10.0253 (11)0.0364 (14)0.0359 (13)−0.0055 (10)0.0037 (9)0.0061 (11)
C10.0220 (13)0.0145 (12)0.0194 (13)−0.0010 (11)−0.0012 (10)−0.0025 (11)
C20.0256 (14)0.0172 (13)0.0189 (13)0.0012 (12)0.0003 (11)−0.0038 (11)
C30.0315 (16)0.0269 (16)0.0155 (13)−0.0018 (13)0.0037 (11)−0.0037 (12)
C40.0352 (17)0.0240 (15)0.0189 (14)−0.0010 (13)−0.0057 (12)0.0010 (12)
C50.0225 (14)0.0201 (14)0.0242 (14)−0.0009 (12)−0.0066 (11)−0.0020 (12)
C60.0270 (15)0.0193 (14)0.0172 (13)−0.0014 (12)−0.0002 (11)−0.0049 (11)
C70.0229 (14)0.0241 (15)0.0210 (14)−0.0026 (12)−0.0032 (11)−0.0039 (11)
C80.0260 (15)0.0204 (14)0.0263 (15)−0.0068 (12)0.0016 (12)−0.0038 (12)
C90.0358 (17)0.0123 (13)0.0284 (15)−0.0008 (12)0.0008 (13)−0.0013 (12)
C100.0268 (15)0.0198 (14)0.0258 (15)0.0018 (12)0.0051 (12)−0.0057 (12)
C110.0255 (15)0.0132 (13)0.0241 (14)−0.0009 (11)0.0016 (11)0.0003 (11)
C120.0294 (16)0.0217 (14)0.0199 (14)−0.0035 (12)−0.0011 (12)0.0042 (12)
C130.0335 (16)0.0252 (15)0.0164 (13)−0.0027 (13)0.0036 (12)−0.0028 (12)

Geometric parameters (Å, °)

Fe1—C12.002 (3)C4—H40.9300
Fe1—C22.015 (3)C5—H50.9300
Fe1—C72.036 (3)C6—C101.430 (4)
Fe1—C62.039 (3)C6—C71.430 (4)
Fe1—C52.045 (3)C6—C131.503 (4)
Fe1—C102.048 (3)C7—C81.424 (4)
Fe1—C82.049 (3)C7—H70.9300
Fe1—C92.056 (3)C8—C91.425 (4)
Fe1—C32.063 (3)C8—H80.9300
Fe1—C42.076 (3)C9—C101.427 (4)
O1—C111.212 (4)C9—H90.9300
C1—C21.440 (4)C10—H100.9300
C1—C51.441 (4)C11—C121.515 (4)
C1—C111.480 (4)C12—C131.544 (4)
C2—C31.421 (4)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.420 (5)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.415 (4)
C1—Fe1—C242.00 (12)C4—C3—H3125.6
C1—Fe1—C7118.70 (12)C2—C3—H3125.6
C2—Fe1—C7102.70 (12)Fe1—C3—H3127.7
C1—Fe1—C699.73 (12)C5—C4—C3108.2 (3)
C2—Fe1—C6114.13 (12)C5—C4—Fe168.73 (17)
C7—Fe1—C641.09 (12)C3—C4—Fe169.44 (17)
C1—Fe1—C541.70 (11)C5—C4—H4125.9
C2—Fe1—C569.68 (12)C3—C4—H4125.9
C7—Fe1—C5157.51 (13)Fe1—C4—H4127.5
C6—Fe1—C5121.23 (12)C4—C5—C1108.2 (3)
C1—Fe1—C10116.24 (12)C4—C5—Fe171.13 (17)
C2—Fe1—C10150.81 (12)C1—C5—Fe167.56 (16)
C7—Fe1—C1068.43 (12)C4—C5—H5125.9
C6—Fe1—C1040.96 (12)C1—C5—H5125.9
C5—Fe1—C10107.44 (13)Fe1—C5—H5126.9
C1—Fe1—C8158.01 (12)C10—C6—C7106.8 (3)
C2—Fe1—C8123.82 (13)C10—C6—C13126.6 (3)
C7—Fe1—C840.80 (12)C7—C6—C13126.4 (3)
C6—Fe1—C869.15 (12)C10—C6—Fe169.86 (16)
C5—Fe1—C8160.19 (13)C7—C6—Fe169.36 (16)
C10—Fe1—C868.35 (13)C13—C6—Fe1121.9 (2)
C1—Fe1—C9154.45 (13)C8—C7—C6108.7 (3)
C2—Fe1—C9163.46 (13)C8—C7—Fe170.09 (17)
C7—Fe1—C968.57 (13)C6—C7—Fe169.55 (16)
C6—Fe1—C969.15 (12)C8—C7—H7125.6
C5—Fe1—C9123.64 (13)C6—C7—H7125.6
C10—Fe1—C940.68 (12)Fe1—C7—H7126.3
C8—Fe1—C940.64 (13)C7—C8—C9108.0 (3)
C1—Fe1—C369.18 (12)C7—C8—Fe169.11 (17)
C2—Fe1—C340.77 (12)C9—C8—Fe169.95 (17)
C7—Fe1—C3120.66 (13)C7—C8—H8126.0
C6—Fe1—C3152.09 (12)C9—C8—H8126.0
C5—Fe1—C367.99 (13)Fe1—C8—H8126.5
C10—Fe1—C3166.86 (13)C8—C9—C10107.6 (3)
C8—Fe1—C3111.49 (13)C8—C9—Fe169.41 (17)
C9—Fe1—C3130.67 (13)C10—C9—Fe169.35 (17)
C1—Fe1—C469.06 (12)C8—C9—H9126.2
C2—Fe1—C468.71 (12)C10—C9—H9126.2
C7—Fe1—C4158.22 (13)Fe1—C9—H9126.6
C6—Fe1—C4160.60 (13)C9—C10—C6108.9 (3)
C5—Fe1—C440.15 (12)C9—C10—Fe169.97 (17)
C10—Fe1—C4128.66 (13)C6—C10—Fe169.17 (16)
C8—Fe1—C4126.57 (13)C9—C10—H10125.6
C9—Fe1—C4114.02 (13)C6—C10—H10125.6
C3—Fe1—C440.13 (13)Fe1—C10—H10126.9
C2—C1—C5107.3 (3)O1—C11—C1121.3 (3)
C2—C1—C11127.8 (3)O1—C11—C12121.2 (3)
C5—C1—C11123.4 (3)C1—C11—C12117.0 (3)
C2—C1—Fe169.48 (17)C11—C12—C13109.1 (3)
C5—C1—Fe170.74 (17)C11—C12—H12A109.9
C11—C1—Fe1114.28 (19)C13—C12—H12A109.9
C3—C2—C1107.6 (3)C11—C12—H12B109.9
C3—C2—Fe171.43 (18)C13—C12—H12B109.9
C1—C2—Fe168.51 (17)H12A—C12—H12B108.3
C3—C2—H2126.2C6—C13—C12114.1 (2)
C1—C2—H2126.2C6—C13—H13A108.7
Fe1—C2—H2125.4C12—C13—H13A108.7
C4—C3—C2108.7 (3)C6—C13—H13B108.7
C4—C3—Fe170.44 (17)C12—C13—H13B108.7
C2—C3—Fe167.80 (16)H13A—C13—H13B107.6

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2366).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Heo, R. W. & Lee, T. R. (1999). J. Organomet. Chem.578, 31–42.
  • Jones, N. D., Marsh, R. E. & Richards, J. H. (1965). Acta Cryst.19, 330–336.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Štěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules Chichester: Wiley.
  • Turbitt, T. D. & Watts, W. E. (1972). J. Organomet. Chem.46, 109–117.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography