PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1052.
Published online 2008 July 23. doi:  10.1107/S1600536808022150
PMCID: PMC2961968

Tetra­aqua­(1,10-phenanthroline-κ2 N,N′)magnesium(II) bis­[(2,4-dichloro­phen­yl)acetate]

Abstract

In the mononuclear title complex, [Mg(C12H8N2)(H2O)4](C8H5Cl2O2)2, each MgII ion is hexa­coordinated by two N atoms from a 1,10-phenanthroline ligand [Mg—N = 2.233 (2) Å] and four water mol­ecules [Mg—OW = 2.033 (2) and 2.043 (1) Å] in a distorted octa­hedral geometry. A twofold rotation axis passes through the Mg atom. In the crystal structure, the cations and anions are linked by inter­molecular O—H(...)O hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.804 (2) Å] into layers parallel to the ac plane.

Related literature

For related literature, see: Castellari et al. (1999 [triangle]); Kopylovich et al. (2003 [triangle]); Sharma et al. (2007 [triangle]); Zhou et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1052-scheme1.jpg

Experimental

Crystal data

  • [Mg(C12H8N2)(H2O)4](C8H5Cl2O2)2
  • M r = 684.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1052-efi1.jpg
  • a = 28.926 (1) Å
  • b = 14.0447 (6) Å
  • c = 7.6074 (3) Å
  • β = 94.785 (1)°
  • V = 3079.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 273 (2) K
  • 0.34 × 0.26 × 0.18 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: empirical [OR multi-scan](using intensity measurements) (SADABS; Sheldrick, 1996 [triangle]) T min = 0.867, T max = 0.921
  • 10955 measured reflections
  • 3732 independent reflections
  • 2619 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.117
  • S = 1.02
  • 3732 reflections
  • 207 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022150/im2068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022150/im2068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Guangdong Ocean University Project (No. 0612178 and No. 0612179), the Zhanjiang City Technology Tender Project (No. 0810014) and Guangdong Ocean University for supporting this work.

supplementary crystallographic information

Comment

The rigid-type phenylacetic acid and its derivatives have versatile binding abilities and the potential capabilities of generating complicated supramolecular architectures. Nevertleless, main group or transition metal compounds in which the phenylacetate ion does not coordinate the metals are rare (Castellari et al. (1999), Kopylovich et al. (2003), Sharma et al. (2007), Zhou et al. (2007)). In the present study, we chose 2,4-dichlorophenylacetate as the anion to prepare a new mononuclear magnesiumII complex, [Mg(C12H8N2)(H2O)4][(C8H5Cl2O2)2], (I), the crystal structure of which is reported here.

As illustrated in Fig. 1, the asymmetric unit of (I) consists of one half of a [Mg(1,10-phen)(H2O)4] cation and one 2,4-dichlorophenylacetate anion. The MgII atom displays a distorted octahedral geometry defined by two N atoms from the 1,10-phenanthroline ligand [Mg—N 2.233 (2) Å] and four water molecules [Mg—Ow 2.033 (2), 2.043 (1) Å], respectively. The characteristic CO(carboxylate) bond lengths suggest electron delocalization in the carboxylate groups of the anionic moieties. In the crystal structure, the cations and anions are linked by intermolecular O—H···O hydrogen bonds between the carboxylate O atoms and the coordinated water molecules. Additional π-π stacking interactions between 1,10-phen ligands with a distance of 3.804 (2) Å leads to the observation of layers parallel to the ac-plane (details see Table 1 and Fig. 2).

Experimental

Benzyloxyacetic acid is commercially available and was used without further purification. The title complex was prepared by the addition of Mg(Cl)2 × 6 H2O (4.06 g, 20 mmol) and 1,10-phenanthroline (3.98 g, 20 mmol) to a hot aqueous solution of 2,4-dichlorophenylacetic acid (4.10 g, 20 mmol); the pH was adjusted to 6 with 0.1M sodium hydroxide. The solution was allowed to evaporate at room temperature. Colorless crystals separated from the filtered solution after several days. CHN analysis: Calcd. for C28H26N2O8Cl4Mg: C 49.12, H 3.83, N 4.09%. Found: C 49.14, H 3.82, 4.08%.

Refinement

The H atoms attached to C atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water molecule were located in a difference Fourier map and refined with O—H distance restraint of 0.85 (1) Å, and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of (I) with 30% probability ellipsoids.
Fig. 2.
Packing diagram of (I).

Crystal data

[Mg(C12H8N2)(H2O)4](C8H5Cl2O2)2F000 = 1408
Mr = 684.62Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10366 reflections
a = 28.926 (1) Åθ = 2.8–28.2º
b = 14.0447 (6) ŵ = 0.46 mm1
c = 7.6074 (3) ÅT = 273 (2) K
β = 94.785 (1)ºPrism, colorless
V = 3079.8 (2) Å30.34 × 0.26 × 0.18 mm
Z = 4

Data collection

Bruker P4 diffractometer3732 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
Detector resolution: 10.000 pixels mm-1θmax = 28.2º
T = 273(2) Kθmin = 2.8º
ω scansh = −38→33
Absorption correction: empirical (using intensity measurements)(SADABS; Sheldrick, 1996)k = −18→18
Tmin = 0.867, Tmax = 0.921l = −9→10
10955 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.0514P)2 + 1.7903P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3732 reflectionsΔρmax = 0.36 e Å3
207 parametersΔρmin = −0.47 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0001 (1)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mg10.50000.70119 (6)0.25000.0377 (2)
Cl10.30958 (2)0.68124 (5)0.95908 (8)0.06695 (19)
Cl20.25982 (3)0.96821 (5)0.52259 (13)0.0957 (3)
O10.42857 (5)0.68303 (10)0.76580 (19)0.0501 (3)
O1W0.44481 (6)0.61206 (10)0.20734 (19)0.0613 (4)
O2W0.50764 (5)0.69659 (11)−0.01445 (17)0.0480 (3)
O20.41678 (5)0.54277 (10)0.88709 (19)0.0544 (4)
N10.45496 (5)0.82808 (11)0.1896 (2)0.0423 (4)
C10.41135 (7)0.82785 (17)0.1205 (3)0.0577 (6)
H1A0.39660.76970.09910.069*
C20.38664 (9)0.9115 (2)0.0787 (4)0.0733 (7)
H2A0.35620.90840.02930.088*
C30.40715 (9)0.9969 (2)0.1101 (3)0.0705 (7)
H3A0.39071.05270.08460.085*
C40.45322 (8)1.00081 (15)0.1812 (3)0.0552 (5)
C50.47614 (6)0.91362 (12)0.2161 (2)0.0392 (4)
C60.47783 (10)1.08762 (15)0.2176 (4)0.0734 (8)
H6A0.46271.14530.19570.088*
C70.33544 (7)0.68867 (14)0.6254 (3)0.0457 (5)
C80.31108 (6)0.73310 (14)0.7514 (3)0.0456 (4)
C90.28790 (7)0.81845 (15)0.7222 (3)0.0544 (5)
H9A0.27200.84660.81010.065*
C100.28898 (7)0.86044 (16)0.5596 (3)0.0603 (6)
C110.31228 (9)0.81981 (19)0.4301 (3)0.0698 (7)
H11A0.31280.84910.32060.084*
C120.33515 (8)0.73431 (19)0.4637 (3)0.0628 (6)
H12A0.35080.70660.37500.075*
C130.36083 (7)0.59691 (15)0.6623 (3)0.0532 (5)
H13A0.36820.56900.55140.064*
H13B0.34060.55300.71760.064*
C140.40558 (7)0.60887 (14)0.7815 (2)0.0413 (4)
H2W10.4831 (4)0.6910 (16)−0.083 (2)0.062*
H2W20.5312 (4)0.6889 (16)−0.071 (2)0.062*
H1W10.4397 (8)0.5689 (12)0.2818 (19)0.062*
H1W20.4390 (8)0.5895 (14)0.1044 (13)0.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mg10.0472 (5)0.0291 (4)0.0373 (4)0.0000.0060 (4)0.000
Cl10.0679 (4)0.0739 (4)0.0613 (4)0.0017 (3)0.0193 (3)0.0105 (3)
Cl20.0834 (5)0.0587 (4)0.1391 (7)0.0047 (3)−0.0259 (5)0.0226 (4)
O10.0404 (7)0.0532 (8)0.0568 (9)−0.0033 (6)0.0054 (6)0.0051 (6)
O1W0.0958 (12)0.0482 (8)0.0394 (8)−0.0322 (8)0.0021 (8)0.0015 (6)
O2W0.0441 (8)0.0631 (9)0.0373 (7)0.0031 (7)0.0062 (6)0.0027 (6)
O20.0743 (10)0.0418 (7)0.0463 (8)0.0029 (7)−0.0003 (7)−0.0041 (6)
N10.0421 (9)0.0402 (8)0.0452 (9)0.0014 (7)0.0074 (7)0.0005 (7)
C10.0458 (12)0.0650 (14)0.0623 (14)0.0013 (10)0.0035 (10)0.0007 (11)
C20.0489 (13)0.095 (2)0.0760 (17)0.0240 (14)0.0029 (11)0.0105 (15)
C30.0744 (17)0.0695 (16)0.0687 (16)0.0356 (14)0.0129 (13)0.0151 (13)
C40.0762 (15)0.0408 (10)0.0513 (12)0.0170 (10)0.0204 (11)0.0065 (9)
C50.0504 (10)0.0320 (8)0.0368 (9)0.0040 (8)0.0137 (7)0.0022 (7)
C60.114 (2)0.0323 (10)0.0777 (18)0.0144 (11)0.0287 (16)0.0067 (11)
C70.0366 (10)0.0509 (11)0.0486 (11)−0.0043 (8)−0.0024 (8)−0.0053 (9)
C80.0377 (10)0.0482 (11)0.0509 (11)−0.0053 (8)0.0037 (8)0.0014 (9)
C90.0407 (11)0.0514 (12)0.0710 (15)−0.0013 (9)0.0041 (10)−0.0032 (10)
C100.0440 (12)0.0514 (12)0.0827 (17)−0.0039 (10)−0.0108 (11)0.0088 (12)
C110.0623 (15)0.0838 (18)0.0612 (15)−0.0099 (13)−0.0061 (12)0.0236 (13)
C120.0558 (13)0.0827 (17)0.0498 (12)−0.0009 (12)0.0034 (10)−0.0016 (12)
C130.0486 (12)0.0500 (12)0.0602 (13)0.0000 (9)−0.0006 (9)−0.0155 (10)
C140.0430 (10)0.0424 (10)0.0395 (10)0.0058 (8)0.0095 (8)−0.0086 (8)

Geometric parameters (Å, °)

Mg1—N12.2327 (16)C3—C41.397 (3)
Mg1—O1W2.0333 (15)C3—H3A0.9300
Mg1—O2W2.0432 (13)C4—C51.407 (3)
Mg1—N1i2.2327 (16)C4—C61.427 (3)
Mg1—O1Wi2.0333 (15)C5—C5i1.433 (4)
Mg1—O2Wi2.0432 (13)C6—C6i1.335 (6)
Cl1—C81.744 (2)C6—H6A0.9300
Cl2—C101.744 (2)C7—C81.385 (3)
N1—C11.325 (3)C7—C121.386 (3)
N1—C51.356 (2)C7—C131.498 (3)
O1—C141.247 (2)C8—C91.382 (3)
O2—C141.252 (2)C9—C101.373 (3)
O1W—H1W10.851 (9)C9—H9A0.9300
O1W—H1W20.849 (9)C10—C111.365 (4)
O2W—H2W10.849 (9)C11—C121.384 (3)
O2W—H2W20.841 (9)C11—H11A0.9300
C1—C21.399 (3)C12—H12A0.9300
C1—H1A0.9300C13—C141.527 (3)
C2—C31.350 (4)C13—H13A0.9700
C2—H2A0.9300C13—H13B0.9700
N1i—Mg1—N174.07 (8)C3—C4—C6123.6 (2)
O1W—Mg1—N191.24 (6)C4—C3—H3A120.2
O1Wi—Mg1—N1163.97 (7)C4—C5—C5i119.50 (13)
O1W—Mg1—O1Wi104.01 (11)C4—C6—H6A119.3
O1W—Mg1—O2W88.36 (6)C5—N1—Mg1115.34 (12)
O1Wi—Mg1—O2W89.41 (6)C5—C4—C6119.2 (2)
O2Wi—Mg1—N196.82 (6)C6i—C6—C4121.32 (14)
O2W—Mg1—N186.08 (6)C6i—C6—H6A119.3
O2Wi—Mg1—O2W176.38 (9)C7—C8—Cl1119.45 (15)
Mg1—O1W—H1W1120.6 (15)C7—C12—H12A118.9
Mg1—O1W—H1W2118.1 (15)C7—C13—C14113.25 (16)
Mg1—O2W—H2W1117.2 (14)C7—C13—H13A108.9
Mg1—O2W—H2W2131.6 (14)C7—C13—H13B108.9
N1—C1—C2122.7 (2)C8—C7—C12116.1 (2)
N1—C1—H1A118.7C8—C7—C13121.84 (19)
N1—C5—C4122.90 (18)C8—C9—H9A121.0
N1—C5—C5i117.60 (10)C9—C8—C7123.2 (2)
O1—C14—O2124.69 (18)C9—C8—Cl1117.34 (17)
O1—C14—C13117.88 (18)C9—C10—Cl2118.1 (2)
O2—C14—C13117.42 (18)C10—C9—C8118.0 (2)
O1W—Mg1—N1i163.97 (7)C10—C9—H9A121.0
O1Wi—Mg1—N1i91.24 (6)C10—C11—C12119.1 (2)
O1W—Mg1—O2Wi89.41 (6)C10—C11—H11A120.5
O1Wi—Mg1—O2Wi88.36 (6)C11—C10—C9121.4 (2)
O2Wi—Mg1—N1i86.08 (6)C11—C10—Cl2120.5 (2)
O2W—Mg1—N1i96.82 (6)C11—C12—C7122.2 (2)
C1—N1—C5117.67 (17)C11—C12—H12A118.9
C1—N1—Mg1126.82 (14)C12—C7—C13122.1 (2)
C1—C2—H2A120.1C12—C11—H11A120.5
C2—C1—H1A118.7C14—C13—H13A108.9
C2—C3—C4119.7 (2)C14—C13—H13B108.9
C2—C3—H3A120.2H1W1—O1W—H1W2108.5 (14)
C3—C2—C1119.8 (2)H2W1—O2W—H2W2110.2 (14)
C3—C2—H2A120.1H13A—C13—H13B107.7
C3—C4—C5117.2 (2)
Mg1—N1—C1—C2−176.53 (18)C5—N1—C1—C2−1.5 (3)
Mg1—N1—C5—C4178.64 (15)C5—C4—C6—C6i0.6 (5)
Mg1—N1—C5—C5i−1.9 (3)C6—C4—C5—N1178.3 (2)
N1i—Mg1—N1—C1175.8 (2)C6—C4—C5—C5i−1.2 (3)
N1i—Mg1—N1—C50.66 (9)C7—C8—C9—C100.5 (3)
N1—C1—C2—C3−0.6 (4)C7—C13—C14—O1−35.1 (3)
O1W—Mg1—N1—C1−10.68 (18)C7—C13—C14—O2145.54 (19)
O1Wi—Mg1—N1—C1151.6 (2)C8—C7—C12—C110.6 (3)
O1W—Mg1—N1—C5174.14 (13)C8—C7—C13—C14−74.1 (2)
O1Wi—Mg1—N1—C5−23.6 (3)C8—C9—C10—C11−0.2 (3)
O2Wi—Mg1—N1—C1−100.24 (18)C8—C9—C10—Cl2−179.92 (15)
O2W—Mg1—N1—C177.59 (18)C9—C10—C11—C120.2 (4)
O2Wi—Mg1—N1—C584.59 (13)C10—C11—C12—C7−0.4 (4)
O2W—Mg1—N1—C5−97.59 (13)Cl1—C8—C9—C10179.64 (16)
C1—N1—C5—C43.0 (3)C12—C7—C8—C9−0.7 (3)
C1—N1—C5—C5i−177.5 (2)Cl2—C10—C11—C12179.89 (17)
C1—C2—C3—C41.2 (4)C13—C7—C8—C9179.01 (18)
C2—C3—C4—C50.2 (4)C12—C7—C8—Cl1−179.82 (15)
C2—C3—C4—C6179.5 (2)C12—C7—C13—C14105.5 (2)
C3—C4—C5—N1−2.4 (3)C13—C7—C8—Cl1−0.2 (3)
C3—C4—C6—C6i−178.7 (3)C13—C7—C12—C11−179.0 (2)
C3—C4—C5—C5i178.1 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O1ii0.849 (9)1.876 (9)2.725 (2)178 (2)
O2W—H2W2···O1i0.841 (9)1.96 (1)2.772 (2)161 (2)
O1W—H1W1···O2iii0.851 (9)1.91 (1)2.728 (2)162 (2)
O1W—H1W2···O2ii0.849 (9)1.84 (1)2.685 (2)171 (2)

Symmetry codes: (ii) x, y, z−1; (i) −x+1, y, −z+1/2; (iii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2068).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Castellari, C., Comelli, F. & Ottani, S. (1999). Acta Cryst. C55, 1054–1056.
  • Kopylovich, M. N., Pombeiro, A. J. L., Fischer, A., Kloo, L. & Kukushkin, V. Yu. (2003). Inorg. Chem.42, 7239–7248. [PubMed]
  • Sharma, R., Sharma, R. P., Balaa, R. & Kariuki, B. M. (2007). J. Mol. Struct.826, 177–184.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhou, J., Sun, C. & Jin, L. (2007). J. Mol. Struct.832, 55–62.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography