PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1448.
Published online 2008 July 9. doi:  10.1107/S1600536808020588
PMCID: PMC2961954

(2R)-Ethyl 2-(5-bromo-2,3-dioxoindolin-1-yl)propanoate

Abstract

The title compound, C13H12BrNO4, was obtained from an optically active aniline derivative. The structure was characterized by 1H NMR, 13C NMR, MS and X-ray diffraction techniques. 86% of the atoms of the two independent mol­ecules in the asymmetric unit show non-crystallographic inversion symmetry.

Related literature

For related structures, see: Akkurt et al. (2006 [triangle]); Miehe et al. (1991 [triangle]); Robeyns et al. (2007 [triangle]). For general background, see: Sandmeyer (1919 [triangle]); Silva et al. (2001 [triangle]); Spek (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1448-scheme1.jpg

Experimental

Crystal data

  • C13H12BrNO4
  • M r = 326.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1448-efi1.jpg
  • a = 9.7390 (13) Å
  • b = 14.355 (2) Å
  • c = 9.8361 (10) Å
  • β = 95.779 (9)°
  • V = 1368.1 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 4.20 mm−1
  • T = 293 (2) K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.385, T max = 0.432
  • 6047 measured reflections
  • 5502 independent reflections
  • 3935 reflections with I > 2σ(I)
  • R int = 0.020
  • 1 standard reflection frequency: 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.140
  • S = 1.02
  • 5502 reflections
  • 348 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.38 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2566 Friedel pairs
  • Flack parameter: −0.06 (3)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020588/bt2723sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020588/bt2723Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database.

supplementary crystallographic information

Comment

Nowadays, much attention has been focused on isatin derivatives for their broad–spectrum biological and pharmacological activities, such as antibacterial, antiprotozoal, antifungal, antiviral, anti–HIV, anticonvulsant, antihelminthic activities, influence CNS, participate in metabolism and stimulate growth of plants (Silva et al., 2001). There is a modern tendency to use pure enantiomers of heterocyclic compounds instead of their racemic mixtures, for example, as starting materials in preparation of pharmaceuticals. It is true for the derivatives of isatin. In this paper, we report the synthesis and crystal structure of the ethyl (2R)–2–(5–bromisatin–1–yl)propanoate.

The asymmetric unit of the title compound has two independent molecules (hereafter called A and B), which depicted in Fig. 1. The ADDSYM test by PLATON (Spek, 2003), shown a noncrystallographic inversion.

In the principle, the geometric parameters of heterobicycle are closely agree with ones in molecular structures of ethyl 2–(2,3–dioxoindolin–1–yl)acetate (Robeyns et al., 2007), N–benzylindole–2,3–dion (N–benzylisatin) (Akkurt et al., 2006) and 1–methyl–1H–indole–2,3–dione (Miehe et al., 1991).

The short interatomic contacts O12a···C3b = 3.01Å and O12b···C3a = 2.98Å were found in the crystal structure.

Experimental

We have synthesized ethyl (2R)–2–(5–bromisatin–1–yl)propanoate from optically active aniline by Sandmeyer method (Sandmeyer, 1919) (Fig. 2). A mixture of solutions of chloralhydrate (0.003 mol) in water (5.1 ml), a solution of ethyl (R)–N–(4–bromophenylamino)propanoate (0.0018 mol) in water (1.23 ml) with concentrated hydrochloric acid (0.26 g), a solution of hydroxylamine hydrochloride (0.0061 mol) in water (1.03 ml) and Na2SO4 (0.42 g), was stirred at reflux for 1–2 min. In addition we have used ethanol as a solvent to increase aniline solubility. The reaction mixture was cooled to r.t., extracted with CH2Cl2 and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to afford isonitroso–substance as brown oil (83%). The isonitroso–substance (0.0015 mol) was added to concentrate sulfuric acid (1.46 g) at 323 K so that the temperature of the reaction mixture did not exceed 343 K. The reaction mixture was stirred at 353 K for 10–15 min. The resulting mixture was cooled to r. t., diluted with cold water, extracted with CH2Cl2 and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent - ethylacetate/petroleum ether: 10/1) to afford ethyl (2R)–2–(5–bromisatin–1–yl)propanoate (60%) as a red solid, its enantiomeric purity determinates by HPLC with chiral stationary phase achieved 97% ee. M.p. 404–405 K.

The 1H NMR (CDCl3), δ, p.p.m., J (Hz): 1.15 (t, J=7.0, 3H, —CH2—CH3), 1.53 (d, J=7.1, 3H, —CH—CH3), 4.08–4.21 (m, 2H, —CH2—CH3), 5.15 (q, J=7.1, 1H, —CH—CH3), 7.12 (d, J=8.5, 1H, 7–H), 7.77 (s, 1H, 4–H), 7.85 (d, J=8.1, 1H, 6–H). 13C NMR (DMSO–d6), δ, p.p.m.: 14.19 (CH3), 14.42 (CH3), 49.55 (CH), 61.89 (CH2), 113.94 (CH), 115.71 (C), 119.92 (C), 127.52 (CH), 140.41 (CH), 148.95 (C), 157.70 (C?O), 169.73 (C?O), 181.87 (C?O). Mass–spectr., m/z (I, %): 224 [M+—CH3CHCO2Et], (10), 145 (2), 117 (8), 91 (36), 41 (39).

Refinement

In the compound I hydrogen atoms bonded to C–atoms were included in calculated positions and refined as riding atoms. Calculated C—H bond lengths are in the range of 0.93–0.97 Å. For methyl H–atoms Uiso values were set equal to 1.5Ueq of the carrier atoms, for other H–atoms Uiso values were set to 1.2Ueq of the carrier atoms.

Figures

Fig. 1.
ORTEP–3 (Farrugia, 1997) plot of the molecules (A and B) of compound I with the numbering scheme. Thermal displacement ellipsoids are shown at the 30% probability level. H atoms are drawn as a small spheres of arbitrary radius.
Fig. 2.
Sinthesis of ethyl (2R)–2–(5–bromisatin–1–yl)propanoate, I.

Crystal data

C13H12BrNO4F000 = 656
Mr = 326.14Dx = 1.583 Mg m3
Monoclinic, P21Melting point: 404.5 K
Hall symbol: P 2ybCu Kα radiation λ = 1.54184 Å
a = 9.7390 (13) ÅCell parameters from 25 reflections
b = 14.355 (2) Åθ = 32.2–34.4º
c = 9.8361 (10) ŵ = 4.20 mm1
β = 95.779 (9)ºT = 293 (2) K
V = 1368.1 (3) Å3Prism, red
Z = 40.20 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.020
Radiation source: Fine–focus sealed tubeθmax = 74.9º
Monochromator: graphiteθmin = 4.5º
T = 293(2) Kh = −12→12
Non–profiled ω scansk = −17→17
Absorption correction: ψ scan(North et al., 1968)l = −12→12
Tmin = 0.385, Tmax = 0.4321 standard reflections
6047 measured reflections every 60 min
5502 independent reflections intensity decay: 2%
3935 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051  w = 1/[σ2(Fo2) + (0.0642P)2 + 0.5869P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.45 e Å3
5502 reflectionsΔρmin = −0.38 e Å3
348 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0039 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapFlack parameter: −0.06 (3)

Special details

Experimental. Number of ψ–scan sets used was 8. The θ correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1a0.0320 (4)0.0742 (3)0.5522 (4)0.0519 (9)
C2a0.0599 (5)−0.0181 (3)0.5310 (6)0.0558 (11)
O21a0.1299 (4)−0.0683 (3)0.6073 (5)0.0748 (11)
C3a−0.0156 (6)−0.0421 (3)0.3892 (6)0.0599 (13)
O31a−0.0148 (5)−0.1195 (2)0.3406 (5)0.0838 (13)
C4a−0.0793 (5)0.0440 (3)0.3390 (5)0.0536 (12)
C5a−0.1571 (6)0.0641 (4)0.2187 (6)0.0655 (14)
H5a−0.17500.01880.15170.079*
C6a−0.2075 (6)0.1520 (4)0.1997 (6)0.0683 (15)
Br6a−0.31241 (9)0.18369 (7)0.03306 (8)0.1113 (3)
C7a−0.1789 (6)0.2207 (4)0.2980 (6)0.0603 (13)
H7a−0.21410.28040.28220.072*
C8a−0.1000 (5)0.2019 (3)0.4175 (5)0.0542 (12)
H8a−0.07990.24820.48270.065*
C9a−0.0506 (5)0.1117 (3)0.4392 (5)0.0468 (10)
C10a0.0842 (5)0.1204 (3)0.6760 (5)0.0524 (11)
H10a0.13150.07240.73410.063*
C11a−0.0284 (6)0.1595 (4)0.7571 (5)0.0663 (15)
H11a−0.07260.21120.70850.099*
H11b0.01190.18010.84500.099*
H11c−0.09540.11190.76870.099*
C12a0.1957 (5)0.1904 (4)0.6456 (5)0.0539 (11)
O12a0.2353 (4)0.2019 (3)0.5372 (4)0.0787 (12)
O13a0.2439 (4)0.2352 (3)0.7588 (4)0.0654 (10)
C14a0.3501 (6)0.3044 (5)0.7423 (6)0.0764 (17)
H14a0.43080.27490.71110.092*
H14b0.31600.35060.67530.092*
C15A0.3859 (7)0.3487 (5)0.8757 (7)0.089 (2)
H15A0.30520.37720.90600.133*
H15B0.45520.39540.86750.133*
H15C0.42080.30260.94080.133*
N1b0.5010 (4)0.5226 (3)0.4543 (4)0.0580 (10)
C2b0.4556 (6)0.6130 (4)0.4568 (7)0.0662 (15)
O21b0.3847 (5)0.6536 (3)0.3690 (6)0.0947 (15)
C3b0.5115 (6)0.6509 (4)0.5989 (7)0.0671 (15)
O31b0.4928 (5)0.7288 (3)0.6363 (6)0.0896 (15)
C4b0.5872 (5)0.5728 (4)0.6681 (5)0.0567 (12)
C5b0.6581 (6)0.5656 (5)0.7945 (6)0.0692 (15)
H5b0.66390.61550.85510.083*
C6b0.7207 (5)0.4817 (5)0.8295 (5)0.0689 (14)
Br6b0.82477 (10)0.46814 (8)1.00249 (8)0.1231 (4)
C7b0.7096 (6)0.4070 (4)0.7425 (6)0.0671 (14)
H7b0.75170.35100.77010.080*
C8b0.6371 (5)0.4131 (4)0.6151 (5)0.0553 (12)
H8b0.62950.36230.55600.066*
C9b0.5761 (5)0.4980 (3)0.5786 (5)0.0459 (10)
C10b0.4649 (5)0.4574 (4)0.3427 (5)0.0596 (12)
H10b0.51580.39990.36650.072*
C11b0.5102 (7)0.4896 (7)0.2087 (7)0.106 (3)
H11d0.45380.54110.17470.159*
H11e0.50080.43940.14400.159*
H11f0.60500.50900.22190.159*
C12b0.3120 (5)0.4334 (4)0.3396 (5)0.0559 (12)
O12b0.2423 (4)0.4511 (3)0.4281 (4)0.0780 (11)
O13b0.2720 (4)0.3850 (3)0.2285 (4)0.0750 (11)
C14b0.1338 (7)0.3446 (7)0.2229 (9)0.105 (3)
H14c0.12500.30890.30540.126*
H14d0.06540.39400.21780.126*
C15b0.1098 (8)0.2856 (6)0.1066 (9)0.114 (3)
H15d0.13090.31880.02650.171*
H15e0.01470.26680.09590.171*
H15f0.16760.23150.11890.171*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1a0.059 (2)0.0364 (19)0.059 (2)0.0009 (17)−0.0007 (18)−0.0023 (17)
C2a0.052 (3)0.038 (2)0.079 (3)−0.001 (2)0.015 (2)0.002 (2)
O21a0.074 (2)0.045 (2)0.104 (3)0.0080 (18)0.006 (2)0.008 (2)
C3a0.065 (3)0.041 (3)0.075 (3)−0.006 (2)0.016 (3)−0.012 (3)
O31a0.094 (3)0.0413 (19)0.116 (4)−0.0057 (19)0.011 (3)−0.027 (2)
C4a0.062 (3)0.040 (3)0.059 (3)−0.008 (2)0.008 (2)−0.008 (2)
C5a0.076 (4)0.056 (3)0.064 (3)−0.021 (3)0.003 (3)−0.009 (3)
C6a0.065 (3)0.073 (4)0.065 (3)−0.015 (3)−0.003 (3)0.000 (3)
Br6A0.1135 (6)0.1265 (7)0.0846 (5)−0.0145 (5)−0.0355 (4)0.0150 (5)
C7a0.059 (3)0.048 (3)0.074 (3)−0.002 (2)0.005 (3)0.008 (2)
C8a0.059 (3)0.035 (2)0.067 (3)−0.004 (2)−0.002 (2)−0.004 (2)
C9a0.047 (2)0.040 (2)0.053 (2)−0.0066 (19)0.005 (2)−0.005 (2)
C10a0.059 (3)0.042 (2)0.054 (3)−0.003 (2)0.000 (2)0.006 (2)
C11a0.069 (3)0.075 (4)0.057 (3)−0.014 (3)0.017 (3)−0.006 (3)
C12a0.048 (2)0.053 (3)0.062 (3)−0.002 (2)0.009 (2)−0.003 (3)
O12a0.074 (2)0.100 (3)0.066 (2)−0.025 (2)0.0229 (19)−0.011 (2)
O13a0.062 (2)0.073 (2)0.061 (2)−0.0174 (18)0.0030 (17)−0.0111 (18)
C14a0.061 (3)0.091 (4)0.078 (4)−0.031 (3)0.013 (3)−0.021 (3)
C15a0.071 (4)0.102 (5)0.092 (5)−0.023 (4)0.006 (3)−0.029 (4)
N1b0.058 (2)0.051 (2)0.063 (3)0.000 (2)−0.003 (2)−0.0029 (19)
C2b0.055 (3)0.050 (3)0.093 (4)0.003 (2)0.004 (3)0.010 (3)
O21b0.077 (3)0.078 (3)0.125 (4)0.009 (2)−0.011 (3)0.035 (3)
C3b0.057 (3)0.048 (3)0.099 (4)−0.006 (2)0.018 (3)−0.002 (3)
O31b0.085 (3)0.044 (2)0.142 (4)−0.002 (2)0.022 (3)−0.016 (2)
C4b0.054 (3)0.051 (3)0.066 (3)−0.007 (2)0.009 (2)−0.012 (2)
C5b0.060 (3)0.076 (4)0.071 (3)−0.011 (3)0.003 (3)−0.027 (3)
C6b0.056 (3)0.093 (4)0.057 (3)0.004 (3)−0.001 (2)−0.006 (3)
Br6b0.1132 (6)0.1801 (10)0.0686 (4)0.0217 (6)−0.0264 (4)−0.0147 (6)
C7b0.058 (3)0.077 (4)0.066 (3)0.010 (3)0.005 (3)0.003 (3)
C8b0.056 (3)0.055 (3)0.055 (3)0.000 (2)0.005 (2)−0.003 (2)
C9b0.042 (2)0.045 (2)0.051 (2)−0.0056 (19)0.0017 (18)−0.0036 (19)
C10b0.052 (3)0.071 (3)0.054 (2)−0.002 (3)−0.003 (2)−0.006 (3)
C11b0.088 (5)0.164 (8)0.069 (4)−0.043 (5)0.022 (3)−0.027 (5)
C12b0.058 (3)0.059 (3)0.051 (3)0.000 (2)0.003 (2)−0.001 (2)
O12b0.072 (2)0.084 (3)0.082 (3)−0.013 (2)0.027 (2)−0.018 (2)
O13b0.054 (2)0.099 (3)0.072 (2)−0.013 (2)0.0042 (18)−0.018 (2)
C14b0.061 (4)0.143 (7)0.112 (6)−0.028 (4)0.016 (4)−0.037 (5)
C15b0.086 (5)0.117 (6)0.140 (7)−0.035 (5)0.017 (5)−0.049 (6)

Geometric parameters (Å, °)

N1a—C2a1.372 (6)N1b—C2b1.373 (7)
N1a—C9a1.412 (6)N1b—C9b1.405 (6)
N1a—C10a1.434 (6)N1b—C10b1.457 (6)
C2a—O21a1.202 (6)C2b—O21b1.201 (7)
C2a—C3a1.548 (7)C2b—C3b1.547 (9)
C3a—O31a1.209 (6)C3b—O31b1.197 (6)
C3a—C4a1.447 (7)C3b—C4b1.471 (8)
C4a—C5a1.370 (7)C4b—C5b1.364 (8)
C4a—C9a1.392 (6)C4b—C9b1.386 (7)
C5a—C6a1.361 (8)C5b—C6b1.378 (9)
C5a—H5a0.9300C5b—H5b0.9300
C6a—C7a1.390 (8)C6b—C7b1.369 (8)
C6a—Br6a1.897 (6)C6b—Br6b1.901 (5)
C7a—C8a1.365 (7)C7b—C8b1.378 (7)
C7a—H7a0.9300C7b—H7b0.9300
C8a—C9a1.391 (7)C8b—C9b1.388 (7)
C8a—H8a0.9300C8b—H8b0.9300
C10a—C11a1.526 (7)C10b—C11b1.504 (8)
C10a—C12a1.531 (7)C10b—C12b1.526 (7)
C10a—H10a0.9800C10b—H10b0.9800
C11a—H11a0.9600C11b—H11d0.9600
C11a—H11b0.9600C11b—H11e0.9600
C11a—H11c0.9600C11b—H11f0.9600
C12a—O12a1.182 (6)C12b—O12b1.185 (6)
C12a—O13a1.329 (6)C12b—O13b1.321 (6)
O13a—C14a1.455 (6)O13b—C14b1.462 (7)
C14a—C15a1.469 (8)C14b—C15b1.424 (10)
C14a—H14a0.9700C14b—H14c0.9700
C14a—H14b0.9700C14b—H14d0.9700
C15a—H15a0.9600C15b—H15d0.9600
C15a—H15b0.9600C15b—H15e0.9600
C15a—H15c0.9600C15b—H15f0.9600
C2a—N1a—C9a110.7 (4)C2b—N1b—C9b111.2 (4)
C2a—N1a—C10a121.2 (4)C2b—N1b—C10b124.5 (5)
C9a—N1a—C10a128.1 (4)C9b—N1b—C10b124.0 (4)
O21a—C2a—N1a126.3 (5)O21b—C2b—N1b127.5 (6)
O21a—C2a—C3a128.1 (5)O21b—C2b—C3b127.1 (6)
N1a—C2a—C3a105.6 (4)N1b—C2b—C3b105.3 (5)
O31a—C3a—C4a132.0 (5)O31b—C3b—C4b130.9 (7)
O31a—C3a—C2a122.6 (5)O31b—C3b—C2b123.8 (6)
C4a—C3a—C2a105.4 (4)C4b—C3b—C2b105.3 (5)
C5a—C4a—C9a121.2 (5)C5b—C4b—C9b121.4 (5)
C5a—C4a—C3a131.0 (5)C5b—C4b—C3b131.6 (5)
C9a—C4a—C3a107.8 (4)C9b—C4b—C3b107.0 (5)
C4a—C5a—C6a118.4 (5)C4b—C5b—C6b117.7 (5)
C4a—C5a—H5a120.8C4b—C5b—H5b121.2
C6a—C5a—H5a120.8C6b—C5b—H5b121.2
C5a—C6a—C7a121.2 (5)C5b—C6b—C7b121.6 (5)
C5a—C6a—Br6a119.8 (4)C5b—C6b—Br6b119.7 (5)
C7a—C6a—Br6a118.9 (4)C7b—C6b—Br6b118.7 (5)
C8a—C7a—C6a121.0 (5)C8b—C7b—C6b121.3 (6)
C8a—C7a—H7a119.5C8b—C7b—H7b119.3
C6a—C7a—H7a119.5C6b—C7b—H7b119.3
C7a—C8a—C9a118.2 (4)C7b—C8b—C9b117.2 (5)
C7a—C8a—H8a120.9C7b—C8b—H8b121.4
C9a—C8a—H8a120.9C9b—C8b—H8b121.4
C8a—C9a—C4a120.0 (4)C8b—C9b—C4b120.8 (4)
C8a—C9a—N1a129.6 (4)C8b—C9b—N1b128.1 (4)
C4a—C9a—N1a110.4 (4)C4b—C9b—N1b111.1 (4)
N1a—C10a—C11a113.7 (4)N1b—C10b—C11b113.1 (5)
N1a—C10a—C12a109.6 (4)N1b—C10b—C12b108.7 (4)
C11a—C10a—C12a115.0 (4)C11b—C10b—C12b115.1 (5)
N1a—C10a—H10a105.9N1b—C10b—H10b106.4
C11a—C10a—H10a105.9C11b—C10b—H10b106.4
C12a—C10a—H10a105.9C12b—C10b—H10b106.4
C10a—C11a—H11a109.5C10b—C11b—H11d109.5
C10a—C11a—H11b109.5C10b—C11b—H11e109.5
H11a—C11a—H11b109.5H11d—C11b—H11e109.5
C10a—C11a—H11c109.5C10b—C11b—H11f109.5
H11a—C11a—H11c109.5H11d—C11b—H11f109.5
H11b—C11a—H11c109.5H11e—C11b—H11f109.5
O12a—C12a—O13a124.6 (5)O12b—C12b—O13b125.3 (5)
O12a—C12a—C10a124.8 (5)O12b—C12b—C10b124.6 (5)
O13a—C12a—C10a110.6 (4)O13b—C12b—C10b110.0 (5)
C12a—O13a—C14a115.6 (4)C12b—O13b—C14b115.7 (5)
C15a—C14a—O13a107.7 (5)C15b—C14b—O13b110.0 (6)
C15a—C14a—H14a110.2C15b—C14b—H14c109.7
O13a—C14a—H14a110.2O13b—C14b—H14c109.7
C15a—C14a—H14b110.2C15b—C14b—H14d109.7
O13a—C14a—H14b110.2O13b—C14b—H14d109.7
H14a—C14a—H14b108.5H14c—C14b—H14d108.2
C14a—C15a—H15a109.5C14b—C15b—H15d109.5
C14a—C15a—H15b109.5C14b—C15b—H15e109.5
H15a—C15a—H15b109.5H15d—C15b—H15e109.5
C14a—C15a—H15c109.5C14b—C15b—H15f109.5
H15a—C15a—H15c109.5H15d—C15b—H15f109.5
H15b—C15a—H15c109.5H15e—C15b—H15f109.5
C9a—N1a—C2a—O21a178.3 (5)C9b—N1b—C2b—O21b−176.9 (6)
C10a—N1a—C2a—O21a−1.7 (8)C10b—N1b—C2b—O21b−2.6 (9)
C9a—N1a—C2a—C3a−0.9 (5)C9b—N1b—C2b—C3b1.4 (6)
C10a—N1a—C2a—C3a179.0 (4)C10b—N1b—C2b—C3b175.7 (4)
O21a—C2a—C3a—O31a2.6 (9)O21b—C2b—C3b—O31b−2.5 (10)
N1a—C2a—C3a—O31a−178.2 (5)N1b—C2b—C3b—O31b179.2 (6)
O21a—C2a—C3a—C4a−177.6 (5)O21b—C2b—C3b—C4b177.8 (6)
N1a—C2a—C3a—C4a1.7 (5)N1b—C2b—C3b—C4b−0.5 (6)
O31a—C3a—C4a—C5a−1.2 (11)O31b—C3b—C4b—C5b0.0 (11)
C2a—C3a—C4a—C5a179.0 (6)C2b—C3b—C4b—C5b179.7 (6)
O31a—C3a—C4a—C9a178.0 (6)O31b—C3b—C4b—C9b179.8 (6)
C2a—C3a—C4a—C9a−1.8 (6)C2b—C3b—C4b—C9b−0.5 (6)
C9a—C4a—C5a—C6a−0.7 (8)C9b—C4b—C5b—C6b1.3 (9)
C3a—C4a—C5a—C6a178.4 (6)C3b—C4b—C5b—C6b−179.0 (6)
C4a—C5a—C6a—C7a1.3 (9)C4b—C5b—C6b—C7b−1.9 (9)
C4a—C5a—C6a—Br6a178.7 (4)C4b—C5b—C6b—Br6b178.5 (4)
C5a—C6a—C7a—C8a−0.5 (9)C5b—C6b—C7b—C8b1.3 (9)
Br6a—C6a—C7a—C8a−177.8 (4)Br6b—C6b—C7b—C8b−179.1 (4)
C6a—C7a—C8a—C9a−1.0 (8)C6b—C7b—C8b—C9b0.0 (8)
C7a—C8a—C9a—C4a1.5 (7)C7b—C8b—C9b—C4b−0.6 (8)
C7a—C8a—C9a—N1a180.0 (5)C7b—C8b—C9b—N1b178.0 (5)
C5a—C4a—C9a—C8a−0.7 (8)C5b—C4b—C9b—C8b−0.1 (8)
C3a—C4a—C9a—C8a−180.0 (5)C3b—C4b—C9b—C8b−179.8 (5)
C5a—C4a—C9a—N1a−179.4 (5)C5b—C4b—C9b—N1b−178.8 (5)
C3a—C4a—C9a—N1a1.3 (6)C3b—C4b—C9b—N1b1.4 (6)
C2a—N1a—C9a—C8a−178.8 (5)C2b—N1b—C9b—C8b179.5 (5)
C10a—N1a—C9a—C8a1.3 (8)C10b—N1b—C9b—C8b5.1 (8)
C2a—N1a—C9a—C4a−0.2 (6)C2b—N1b—C9b—C4b−1.8 (6)
C10a—N1a—C9a—C4a179.9 (5)C10b—N1b—C9b—C4b−176.2 (5)
C2a—N1a—C10a—C11a−119.8 (5)C2b—N1b—C10b—C11b60.4 (7)
C9a—N1a—C10a—C11a60.1 (6)C9b—N1b—C10b—C11b−125.9 (6)
C2a—N1a—C10a—C12a109.9 (5)C2b—N1b—C10b—C12b−68.7 (6)
C9a—N1a—C10a—C12a−70.1 (6)C9b—N1b—C10b—C12b104.9 (5)
N1a—C10a—C12a—O12a−2.3 (7)N1b—C10b—C12b—O12b−12.8 (8)
C11a—C10a—C12a—O12a−131.8 (6)C11b—C10b—C12b—O12b−140.8 (7)
N1a—C10a—C12a—O13a179.0 (4)N1b—C10b—C12b—O13b171.3 (4)
C11A—C10a—C12a—O13a49.5 (6)C11b—C10b—C12b—O13b43.3 (7)
O12A—C12a—O13a—C14a1.8 (8)O12b—C12b—O13b—C14b−5.3 (9)
C10A—C12a—O13a—C14a−179.5 (5)C10b—C12b—O13b—C14b170.6 (6)
C12A—O13a—C14a—C15a177.7 (5)C12b—O13b—C14b—C15b−173.2 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2723).

References

  • Akkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1575–o1577.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Miehe, G., Susse, P., Kupcik, V., Egert, E., Nieger, M., Kunz, G., Gerke, R., Knieriem, B., Niemeyer, M. & Luttke, W. (1991). Angew. Chem. Int. Ed. Engl.30, 964–967.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Robeyns, K., Rohand, T., Bouhfid, R., Essassi, E. L. M. & Van Meervelt, L. (2007). Acta Cryst. E63, o1747–o1748.
  • Sandmeyer, T. (1919). Helv. Chim. Acta, 2, 234–242.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, J. F., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc.12, 273–324.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography