PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1024.
Published online 2008 July 12. doi:  10.1107/S1600536808020916
PMCID: PMC2961946

Hexaaqua­copper(II) dichloride bis­(hexa­methyl­enetetra­mine) tetra­hydrate

Abstract

The title compound, [Cu(H2O)6]Cl2·2C6H12N4·4H2O, was prepared under mild hydro­thermal conditions. The asymmetric unit consists of one half of the [Cu(H2O)6]2+ cation, a hexa­methyl­enetetra­mine mol­ecule, two solvent water mol­ecules and a chloride ion. The formula unit is generated by crystallographic inversion symmetry. The Cu atom lies on a crystallographic inversion centre. It is in a slightly distorted octa­hedral coordination environment. In the crystal structure, inter­molecular O—H(...)O, O—H(...)N and O—H(...)Cl hydrogen bonds link the components into a three-dimensional network.

Related literature

For a related structure, see: Kinzhibalo et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1024-scheme1.jpg

Experimental

Crystal data

  • [Cu(H2O)6]Cl2·2C6H12N4·4H2O
  • M r = 594.99
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1024-efi1.jpg
  • a = 9.321 (3) Å
  • b = 9.3923 (16) Å
  • c = 9.4261 (16) Å
  • α = 119.523 (2)°
  • β = 94.153 (3)°
  • γ = 101.065 (3)°
  • V = 691.1 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 291 (2) K
  • 0.36 × 0.29 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.709, T max = 0.860
  • 5328 measured reflections
  • 2551 independent reflections
  • 2083 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.108
  • S = 1.05
  • 2551 reflections
  • 151 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020916/lh2645sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020916/lh2645Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.

supplementary crystallographic information

Comment

The asymmetric unit and some symmetry related atoms are shown in Fig.1. The asymmetric unit consists of one half of hexaaqua CuII cation, one chloride anion, one uncoordinated neutral hexamethylenetetramine molecule and two molecules of water of crystallization. In the crystal structure, hydrogen bonding between [Cu(H2O)6]2+ cations and hexamethylenetetramine molecules, and those between [Cu(H2O)6]2+ cations and chloride ions are shown in Fig. 2 and Fig.3, respectively. A 16-membered ring formed by cations and hexamethylenetetramine moieties via the H-bonding interactions propagates along the c-axis. The chloride ion H-bonded with the uncoordinated water molecules gives rise to a number of anionic ring systems (Fig. 3). One of the hydrogen atoms of the uncoordinated water molecule connects the chloride ion and forms a 16-membered ring. The combonation of these anionic and cationic frameworks results in the formation of a three-dimensional network.

Experimental

All reagents were of AR grade and used without further purification. C6H12N4 (1.401 g, 10 mmol) was dissolved in 50 ml EtOH/H2O (V:V = 1:1) solution, then the resultant solution was added in 10 ml double-distilled water containing CuCl2.2H2O (0.171 g, 1 mmol), The resulting solution was heated at 373 K for 96 h. After cooling to room temperature, blue crystals were obtained in a yield up to 48.6%.

Refinement

H atoms bonded to O atoms were located in a difference map and included in their 'as found' positions with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C-H = 0.97 Å and with Uiso(H)=1.2Ueq(C). All H atoms were treated as riding.

Figures

Fig. 1.
The asymmetric unit and symmetry related atoms of the title compound with 30% probability ellipsoids [symmetry code: (A) -x+1, -y, -z].
Fig. 2.
Hydrogen bonding [dashed lines] in part of the crystal structure between [Cu(H2O)6]2+ cations, hexamethylenetetramine molecules and water molecules.
Fig. 3.
Hydrogen bonding [dashed lines] in part of the crystal structure between the [Cu(H2O)6]2+ cations, chloride anions and water molecules.

Crystal data

[Cu(H2O)6]Cl2·2C6H12N4·4H2OZ = 1
Mr = 594.99F000 = 315
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.321 (3) ÅCell parameters from 1415 reflections
b = 9.3923 (16) Åθ = 2.5–22.9º
c = 9.4261 (16) ŵ = 1.04 mm1
α = 119.523 (2)ºT = 291 (2) K
β = 94.153 (3)ºBlock, blue
γ = 101.065 (3)º0.36 × 0.29 × 0.15 mm
V = 691.1 (3) Å3

Data collection

Bruker SMART CCD diffractometer2551 independent reflections
Radiation source: fine-focus sealed tube2083 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
Detector resolution: 0 pixels mm-1θmax = 25.5º
T = 291(2) Kθmin = 2.5º
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −11→11
Tmin = 0.709, Tmax = 0.860l = −11→11
5328 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.0473P)2 + 0.4567P] P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2551 reflectionsΔρmax = 0.30 e Å3
151 parametersΔρmin = −0.51 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.00000.00000.03048 (18)
Cl10.18946 (11)0.17433 (12)0.43516 (12)0.0544 (3)
O10.3831 (2)0.1341 (3)−0.0575 (3)0.0410 (6)
H1W0.38850.22510.02670.061*
H2W0.30320.0955−0.12370.061*
O20.6183 (3)0.2239 (3)0.1983 (3)0.0458 (6)
H3W0.61680.25220.29600.069*
H4W0.68250.29500.19260.069*
O30.3576 (3)−0.0289 (3)0.1457 (3)0.0468 (6)
H5W0.34000.06210.20720.070*
H6W0.3653−0.08470.19010.070*
O40.1965 (3)0.5031 (3)0.7782 (3)0.0481 (6)
H7W0.20860.42040.69340.072*
H8W0.10570.49420.77870.072*
O50.1485 (3)0.0517 (4)0.7004 (4)0.0741 (9)
H9W0.16970.09460.64320.111*
H10W0.0599−0.00290.67170.111*
N10.3348 (3)0.7402 (3)0.2551 (3)0.0349 (6)
N20.3362 (3)0.6544 (3)0.4602 (3)0.0347 (6)
N30.3419 (3)0.4512 (3)0.1727 (3)0.0339 (6)
N40.1150 (3)0.5418 (3)0.2441 (3)0.0352 (6)
C10.3865 (4)0.7928 (4)0.4281 (4)0.0372 (7)
H1A0.34930.88840.50040.045*
H1B0.49450.82970.45440.045*
C20.3940 (4)0.5117 (4)0.3491 (4)0.0367 (7)
H2A0.36220.41930.36850.044*
H2B0.50210.54690.37470.044*
C30.1779 (4)0.4020 (4)0.1381 (4)0.0399 (8)
H3A0.14180.36310.02250.048*
H3B0.14330.30830.15500.048*
C40.1704 (4)0.6831 (4)0.2180 (4)0.0390 (8)
H4A0.13110.77740.28860.047*
H4B0.13420.64760.10340.047*
C50.3921 (4)0.5949 (4)0.1478 (4)0.0384 (8)
H5A0.50020.63010.17180.046*
H5B0.35840.55830.03240.046*
C60.1729 (4)0.5996 (4)0.4188 (4)0.0388 (8)
H6A0.13350.69310.49110.047*
H6B0.13860.50790.43860.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0393 (3)0.0273 (3)0.0255 (3)0.0104 (2)0.0087 (2)0.0133 (2)
Cl10.0599 (6)0.0441 (5)0.0534 (6)0.0137 (5)0.0259 (5)0.0190 (5)
O10.0505 (14)0.0335 (12)0.0335 (12)0.0193 (11)0.0002 (10)0.0117 (10)
O20.0663 (16)0.0310 (12)0.0231 (11)−0.0071 (11)0.0028 (11)0.0093 (10)
O30.0699 (17)0.0442 (14)0.0551 (15)0.0328 (13)0.0383 (13)0.0372 (13)
O40.0416 (14)0.0439 (14)0.0435 (14)0.0008 (11)0.0087 (11)0.0151 (12)
O50.0623 (18)0.088 (2)0.070 (2)0.0023 (16)−0.0133 (15)0.0494 (19)
N10.0419 (16)0.0337 (15)0.0399 (15)0.0157 (13)0.0169 (12)0.0237 (13)
N20.0422 (15)0.0331 (14)0.0248 (13)0.0026 (12)0.0077 (11)0.0143 (12)
N30.0421 (15)0.0299 (14)0.0300 (14)0.0139 (12)0.0067 (12)0.0141 (12)
N40.0353 (15)0.0330 (15)0.0333 (14)0.0089 (12)0.0074 (12)0.0141 (12)
C10.0456 (19)0.0255 (16)0.0339 (17)0.0049 (14)0.0106 (15)0.0117 (14)
C20.0448 (19)0.0355 (18)0.0335 (17)0.0093 (15)0.0032 (14)0.0214 (15)
C30.0403 (19)0.0323 (18)0.0335 (18)0.0067 (15)0.0012 (15)0.0090 (15)
C40.047 (2)0.0410 (19)0.0398 (18)0.0225 (16)0.0150 (15)0.0240 (16)
C50.047 (2)0.046 (2)0.0327 (17)0.0224 (17)0.0174 (15)0.0240 (16)
C60.048 (2)0.0343 (18)0.0359 (18)0.0082 (15)0.0176 (15)0.0190 (15)

Geometric parameters (Å, °)

Cu1—O22.017 (2)N2—C21.469 (4)
Cu1—O2i2.017 (2)N2—C11.475 (4)
Cu1—O12.045 (2)N3—C31.472 (4)
Cu1—O1i2.045 (2)N3—C21.473 (4)
Cu1—O3i2.053 (2)N3—C51.476 (4)
Cu1—O32.053 (2)N4—C31.467 (4)
O1—H1W0.8200N4—C41.472 (4)
O1—H2W0.8260N4—C61.474 (4)
O2—H3W0.8254C1—H1A0.9700
O2—H4W0.8330C1—H1B0.9700
O3—H5W0.8200C2—H2A0.9700
O3—H6W0.8246C2—H2B0.9700
O4—H7W0.8304C3—H3A0.9700
O4—H8W0.8351C3—H3B0.9700
O5—H9W0.8312C4—H4A0.9700
O5—H10W0.8289C4—H4B0.9700
N1—C11.462 (4)C5—H5A0.9700
N1—C51.473 (4)C5—H5B0.9700
N1—C41.477 (4)C6—H6A0.9700
N2—C61.466 (4)C6—H6B0.9700
O2—Cu1—O2i180C4—N4—C6107.7 (2)
O2—Cu1—O187.24 (9)N1—C1—N2111.9 (2)
O2i—Cu1—O192.76 (9)N1—C1—H1A109.2
O2—Cu1—O1i92.76 (9)N2—C1—H1A109.2
O2i—Cu1—O1i87.24 (9)N1—C1—H1B109.2
O1—Cu1—O1i180N2—C1—H1B109.2
O2—Cu1—O3i90.30 (10)H1A—C1—H1B107.9
O2i—Cu1—O3i89.70 (10)N2—C2—N3112.0 (2)
O1—Cu1—O3i86.64 (9)N2—C2—H2A109.2
O1i—Cu1—O3i93.36 (9)N3—C2—H2A109.2
O2—Cu1—O389.70 (10)N2—C2—H2B109.2
O2i—Cu1—O390.30 (10)N3—C2—H2B109.2
O1—Cu1—O393.36 (9)H2A—C2—H2B107.9
O1i—Cu1—O386.64 (9)N4—C3—N3112.7 (3)
O3i—Cu1—O3180N4—C3—H3A109.1
Cu1—O1—H1W109.5N3—C3—H3A109.1
Cu1—O1—H2W126.7N4—C3—H3B109.1
H1W—O1—H2W113.2N3—C3—H3B109.1
Cu1—O2—H3W124.5H3A—C3—H3B107.8
Cu1—O2—H4W124.2N4—C4—N1112.3 (2)
H3W—O2—H4W110.9N4—C4—H4A109.2
Cu1—O3—H5W109.5N1—C4—H4A109.2
Cu1—O3—H6W123.5N4—C4—H4B109.2
H5W—O3—H6W113.5N1—C4—H4B109.2
H7W—O4—H8W110.2H4A—C4—H4B107.9
H9W—O5—H10W111.4N1—C5—N3112.0 (2)
C1—N1—C5108.3 (2)N1—C5—H5A109.2
C1—N1—C4108.1 (2)N3—C5—H5A109.2
C5—N1—C4108.3 (3)N1—C5—H5B109.2
C6—N2—C2108.5 (2)N3—C5—H5B109.2
C6—N2—C1108.5 (2)H5A—C5—H5B107.9
C2—N2—C1108.0 (2)N2—C6—N4112.1 (2)
C3—N3—C2108.0 (3)N2—C6—H6A109.2
C3—N3—C5108.1 (2)N4—C6—H6A109.2
C2—N3—C5107.7 (2)N2—C6—H6B109.2
C3—N4—C4108.1 (3)N4—C6—H6B109.2
C3—N4—C6107.9 (2)H6A—C6—H6B107.9
C5—N1—C1—N2−58.7 (3)C3—N4—C4—N1−57.9 (3)
C4—N1—C1—N258.3 (3)C6—N4—C4—N158.4 (3)
C6—N2—C1—N1−58.5 (3)C1—N1—C4—N4−58.8 (3)
C2—N2—C1—N158.9 (3)C5—N1—C4—N458.3 (3)
C6—N2—C2—N358.4 (3)C1—N1—C5—N358.7 (3)
C1—N2—C2—N3−59.0 (3)C4—N1—C5—N3−58.2 (3)
C3—N3—C2—N2−57.7 (3)C3—N3—C5—N158.0 (3)
C5—N3—C2—N258.8 (3)C2—N3—C5—N1−58.5 (3)
C4—N4—C3—N358.1 (3)C2—N2—C6—N4−58.6 (3)
C6—N4—C3—N3−58.2 (3)C1—N2—C6—N458.5 (3)
C2—N3—C3—N458.1 (3)C3—N4—C6—N258.2 (3)
C5—N3—C3—N4−58.2 (3)C4—N4—C6—N2−58.3 (3)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1W···N30.822.042.814 (3)158
O1—H2W···O5ii0.831.942.734 (3)162
O2—H3W···N2iii0.831.992.800 (3)167
O2—H4W···O4iii0.831.892.700 (3)165
O3—H5W···Cl10.822.543.190 (2)137
O3—H6W···N1iv0.822.002.805 (3)165
O4—H7W···Cl10.832.353.170 (3)168
O4—H8W···N4v0.842.002.829 (4)174
O5—H9W···Cl10.832.433.245 (3)169
O5—H10W···Cl1vi0.832.373.200 (3)175

Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1; (vi) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2645).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kinzhibalo, V. V., Mys’kiv, M. G. & Davydov, V. N. (2002). Koord. Khim.28, 927–928.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography