PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1022.
Published online 2008 July 12. doi:  10.1107/S1600536808020898
PMCID: PMC2961944

Bis(O,O′-diphenethyl dithio­phosphato-κ2 S,S′)bis­(4-methyl­pyridine-κN)nickel(II)

Abstract

The title complex, [Ni(C16H18O2PS2)2(C6H7N)2], exhibits a roughly octa­hedral coordination geometry. The NiII atom lies on an inversion centre and is coordinated by four S atoms of O,O′-diphenethyl dithio­phosphate mol­ecules and two N atoms of 4-methyl­pyridine mol­ecules. Important geometric data include Ni—N = 2.100 (3) Å, and Ni—S = 2.5101 (10) and 2.4772 (11) Å.

Related literature

For related literature, see: Allen (2002 [triangle]); Drew et al. (1987 [triangle]); Harrison et al. (1987 [triangle]); Liu et al. (1997 [triangle]); Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1022-scheme1.jpg

Experimental

Crystal data

  • [Ni(C16H18O2PS2)2(C6H7N)2]
  • M r = 919.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1022-efi1.jpg
  • a = 12.920 (4) Å
  • b = 17.498 (4) Å
  • c = 10.979 (3) Å
  • β = 113.05 (3)°
  • V = 2283.9 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.72 mm−1
  • T = 294 (2) K
  • 0.50 × 0.48 × 0.33 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: spherical (WinGX; Farrugia, 1999 [triangle]) T min = 0.715, T max = 0.797
  • 4524 measured reflections
  • 4263 independent reflections
  • 2538 reflections with I > 2σ(I)
  • R int = 0.004
  • 3 standard reflections every 300 reflections intensity decay: 0.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.125
  • S = 0.98
  • 4263 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020898/dn2365sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020898/dn2365Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial assistance from the Education Committee of Sichuan Province of China (project No. 2006 A110, 07ZA161) and the Science and Technology Office of Zigong City, China (project No. 07GX008).

supplementary crystallographic information

Comment

Interest in the chemistry of metal complexes of O,O'- dialkyldithiophosphates continues to grow due to extensively employed as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides(Harrison et al.,1987; Liu et al., 1997;Li et al.,2006). O,O'-Dialkyldithiophosphates exhibit remarkable variety of forms of coordination to metal (Drew et al.,1987). These systems can adopt a variety of molecular and crystal structures, mono-,bi-,tetra-,and polynuclear. We report here the synthesis and crystal structure of Ni[S2P(OCH2CH2Ph)2]2(NC5H4CH3-4)2.

The NiII atom exhibits a roughly octahedral geometry,and lies on an inversion center (Fig.1). The bond lengths and angles within the complex may be considered normal in comparison with the Cambridge Structural Database results (Allen, 2002).

Experimental

90 ml hot aqueous solution of Ni(OAc)2.4 H2O (1.87 g, 7.5 mmol) was added to 90 ml boiling methanol solution of [(PhCH2CH2O)2PS2]NH2(CH2CH3)2(6.42 g, 15.75 mmol). The mixture was refluxed and stirred for 30 minutes.After cooling to room temperature, the resulting Ni[S2P(OCH2CH2Ph)2]2 precipitate was collected by filtration and washed with methanol.

0.56 g 4-methylpyridine was added to a solution of Ni[S2P(OCH2CH2Ph)2]2 (0.72 g, 1 mmol) in 30 ml acetone and 60 ml petroleum ether, then the reaction mixture was concentrated to about 30 ml with a vacuum rotary evaporator. After cooling to room temperature, the pale green precipitate was collected by filtration and washed with petroleum ether.The block crystal was dissovled in a solution of 0.6 g 4-methylpyridine in 30 ml acetone and 20 ml petroleum ether, and the solution was kept at room temperature, green block crystals of Ni[S2P(OCH2CH2Ph)2]2(NC5H4CH3-4)2 were obtained in four weeks.

Refinement

All H atoms attached to C atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.96 Å (methyl) and Uiso(H) =1.2Ueq(C, aromatic and methylene) or 1.5Ueq (C, methyl).

Figures

Fig. 1.
A View of the title complexe showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for the sake of clarity.[Symmetry code: (i) -x + 1, -y, -z].

Crystal data

[Ni(C16H18O2PS2)2(C6H7N)2]F000 = 964
Mr = 919.77Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.920 (4) Åθ = 4.7–7.8º
b = 17.498 (4) ŵ = 0.72 mm1
c = 10.979 (3) ÅT = 294 (2) K
β = 113.05 (3)ºBlock, green
V = 2283.9 (12) Å30.50 × 0.48 × 0.33 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.004
Radiation source: fine-focus sealed tubeθmax = 25.6º
Monochromator: graphiteθmin = 1.7º
T = 294(2) Kh = −15→6
ω/2θ scansk = −21→0
Absorption correction: for a sphere(WINGX; Farrugia, 1999)l = −12→13
Tmin = 0.715, Tmax = 0.7973 standard reflections
4524 measured reflections every 300 reflections
4263 independent reflections intensity decay: 0.3%
2538 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.125  w = 1/[σ2(Fo2) + (0.072P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4263 reflectionsΔρmax = 0.40 e Å3
263 parametersΔρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.00000.00000.04415 (18)
S10.37867 (8)0.09900 (5)0.04468 (9)0.0600 (3)
S20.68569 (7)0.06097 (5)0.11775 (9)0.0560 (3)
P10.74567 (7)−0.03034 (6)0.06089 (9)0.0566 (3)
O10.8408 (2)−0.07200 (17)0.1803 (2)0.0721 (8)
O20.82597 (19)−0.00827 (16)−0.0117 (2)0.0738 (8)
N10.4851 (2)0.05930 (16)−0.1723 (3)0.0471 (6)
C10.8201 (3)−0.0924 (2)0.2958 (3)0.0643 (10)
H1A0.7570−0.12740.27200.077*
H1B0.8024−0.04710.33500.077*
C20.9244 (3)−0.1296 (3)0.3921 (4)0.0693 (11)
H2A0.9359−0.17800.35640.083*
H2B0.9887−0.09720.40490.083*
C30.9159 (3)−0.1428 (2)0.5224 (4)0.0599 (9)
C40.9828 (4)−0.1032 (3)0.6319 (4)0.0779 (12)
H41.0354−0.06900.62520.094*
C50.9745 (5)−0.1126 (3)0.7503 (5)0.1013 (16)
H51.0213−0.08510.82370.122*
C60.8984 (5)−0.1618 (4)0.7619 (5)0.1083 (19)
H60.8916−0.16740.84270.130*
C70.8314 (4)−0.2035 (3)0.6549 (6)0.111 (2)
H70.7791−0.23760.66270.133*
C80.8416 (4)−0.1947 (3)0.5345 (4)0.0880 (14)
H80.7978−0.22410.46210.106*
C90.7811 (3)0.0340 (3)−0.1333 (4)0.0786 (13)
H9A0.72600.0707−0.13000.094*
H9B0.7443−0.0005−0.20680.094*
C100.8743 (3)0.0741 (3)−0.1521 (4)0.0792 (12)
H10A0.93050.0371−0.15090.095*
H10B0.90940.1092−0.07900.095*
C110.8351 (3)0.1179 (2)−0.2803 (3)0.0565 (9)
C120.7967 (3)0.0800 (2)−0.3984 (4)0.0656 (10)
H120.79310.0269−0.39950.079*
C130.7637 (3)0.1192 (3)−0.5139 (4)0.0856 (14)
H130.73880.0922−0.59310.103*
C140.7658 (4)0.1953 (4)−0.5172 (6)0.1012 (19)
H140.74280.2208−0.59780.121*
C150.8018 (4)0.2354 (3)−0.4018 (7)0.1067 (19)
H150.80260.2886−0.40260.128*
C160.8375 (4)0.1958 (3)−0.2827 (5)0.0807 (13)
H160.86330.2228−0.20340.097*
C170.4546 (3)0.0236 (2)−0.2882 (3)0.0552 (9)
H170.4386−0.0284−0.29190.066*
C180.4457 (3)0.0600 (2)−0.4025 (4)0.0642 (10)
H180.42290.0329−0.48150.077*
C190.4706 (3)0.1367 (3)−0.4005 (4)0.0674 (11)
C200.5011 (3)0.1735 (2)−0.2822 (4)0.0691 (11)
H200.51770.2254−0.27640.083*
C210.5072 (3)0.1338 (2)−0.1714 (4)0.0588 (9)
H210.52780.1602−0.09190.071*
C220.4675 (4)0.1771 (3)−0.5222 (5)0.1025 (17)
H22A0.43010.2254−0.53010.154*
H22B0.42750.1464−0.59870.154*
H22C0.54300.1854−0.51560.154*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0442 (3)0.0490 (3)0.0422 (3)−0.0013 (3)0.0201 (3)0.0022 (3)
S10.0643 (6)0.0611 (6)0.0612 (6)0.0078 (5)0.0317 (5)0.0007 (5)
S20.0515 (5)0.0646 (6)0.0510 (5)−0.0106 (4)0.0190 (4)0.0018 (4)
P10.0450 (5)0.0802 (7)0.0490 (5)0.0067 (5)0.0233 (4)0.0164 (5)
O10.0545 (14)0.111 (2)0.0570 (15)0.0208 (14)0.0285 (12)0.0289 (14)
O20.0479 (13)0.123 (2)0.0581 (15)0.0103 (14)0.0287 (12)0.0319 (15)
N10.0449 (15)0.0522 (17)0.0490 (16)0.0003 (13)0.0234 (13)0.0049 (13)
C10.053 (2)0.089 (3)0.056 (2)0.0092 (19)0.0264 (18)0.023 (2)
C20.051 (2)0.094 (3)0.059 (2)0.013 (2)0.0184 (19)0.021 (2)
C30.049 (2)0.069 (2)0.055 (2)0.0095 (19)0.0131 (17)0.0187 (19)
C40.073 (3)0.089 (3)0.065 (3)−0.002 (2)0.021 (2)0.011 (2)
C50.119 (4)0.110 (4)0.062 (3)0.007 (3)0.021 (3)0.005 (3)
C60.106 (4)0.157 (5)0.067 (3)0.021 (4)0.040 (3)0.040 (4)
C70.075 (3)0.154 (5)0.097 (4)−0.013 (3)0.028 (3)0.058 (4)
C80.078 (3)0.112 (4)0.062 (3)−0.020 (3)0.015 (2)0.023 (3)
C90.056 (2)0.127 (4)0.057 (2)0.003 (2)0.0274 (19)0.035 (2)
C100.063 (2)0.120 (4)0.056 (2)−0.005 (2)0.025 (2)0.020 (2)
C110.0480 (19)0.079 (3)0.051 (2)−0.0007 (18)0.0296 (17)0.0078 (19)
C120.057 (2)0.080 (3)0.061 (2)−0.0134 (19)0.0246 (19)−0.007 (2)
C130.064 (3)0.139 (5)0.053 (3)−0.014 (3)0.023 (2)0.004 (3)
C140.064 (3)0.156 (6)0.086 (4)0.005 (3)0.033 (3)0.056 (4)
C150.101 (4)0.074 (3)0.170 (6)0.022 (3)0.080 (4)0.042 (4)
C160.085 (3)0.084 (3)0.088 (3)−0.010 (3)0.050 (3)−0.023 (3)
C170.054 (2)0.063 (2)0.051 (2)0.0008 (17)0.0234 (17)−0.0012 (18)
C180.058 (2)0.092 (3)0.048 (2)0.007 (2)0.0268 (18)0.007 (2)
C190.055 (2)0.086 (3)0.069 (3)0.012 (2)0.033 (2)0.025 (2)
C200.071 (3)0.063 (2)0.078 (3)0.002 (2)0.033 (2)0.020 (2)
C210.061 (2)0.058 (2)0.061 (2)−0.0007 (18)0.0280 (19)0.0034 (19)
C220.098 (3)0.134 (4)0.090 (3)0.019 (3)0.052 (3)0.056 (3)

Geometric parameters (Å, °)

Ni1—N1i2.100 (3)C8—H80.9300
Ni1—N12.100 (3)C9—C101.476 (5)
Ni1—S22.4772 (11)C9—H9A0.9700
Ni1—S2i2.4772 (11)C9—H9B0.9700
Ni1—S12.5101 (10)C10—C111.507 (5)
Ni1—S1i2.5101 (10)C10—H10A0.9700
S1—P1i1.9772 (15)C10—H10B0.9700
S2—P11.9803 (15)C11—C161.363 (6)
P1—O11.581 (3)C11—C121.365 (5)
P1—O21.584 (2)C12—C131.355 (6)
P1—S1i1.9772 (15)C12—H120.9300
O1—C11.440 (4)C13—C141.332 (7)
O2—C91.435 (4)C13—H130.9300
N1—C171.332 (4)C14—C151.362 (7)
N1—C211.333 (4)C14—H140.9300
C1—C21.497 (5)C15—C161.390 (7)
C1—H1A0.9700C15—H150.9300
C1—H1B0.9700C16—H160.9300
C2—C31.495 (5)C17—C181.371 (5)
C2—H2A0.9700C17—H170.9300
C2—H2B0.9700C18—C191.378 (5)
C3—C41.363 (5)C18—H180.9300
C3—C81.365 (5)C19—C201.362 (5)
C4—C51.356 (6)C19—C221.498 (5)
C4—H40.9300C20—C211.376 (5)
C5—C61.350 (7)C20—H200.9300
C5—H50.9300C21—H210.9300
C6—C71.365 (7)C22—H22A0.9600
C6—H60.9300C22—H22B0.9600
C7—C81.387 (6)C22—H22C0.9600
C7—H70.9300
N1i—Ni1—N1180.0C3—C8—C7120.0 (5)
N1i—Ni1—S290.83 (8)C3—C8—H8120.0
N1—Ni1—S289.17 (8)C7—C8—H8120.0
N1i—Ni1—S2i89.17 (8)O2—C9—C10108.7 (3)
N1—Ni1—S2i90.83 (8)O2—C9—H9A110.0
S2—Ni1—S2i180.0C10—C9—H9A110.0
N1i—Ni1—S190.50 (8)O2—C9—H9B110.0
N1—Ni1—S189.50 (8)C10—C9—H9B110.0
S2—Ni1—S198.75 (4)H9A—C9—H9B108.3
S2i—Ni1—S181.25 (4)C9—C10—C11112.3 (3)
N1i—Ni1—S1i89.50 (8)C9—C10—H10A109.2
N1—Ni1—S1i90.50 (8)C11—C10—H10A109.2
S2—Ni1—S1i81.25 (4)C9—C10—H10B109.2
S2i—Ni1—S1i98.75 (4)C11—C10—H10B109.2
S1—Ni1—S1i180.0H10A—C10—H10B107.9
P1i—S1—Ni183.82 (5)C16—C11—C12118.1 (4)
P1—S2—Ni184.64 (4)C16—C11—C10121.7 (4)
O1—P1—O294.61 (13)C12—C11—C10120.3 (4)
O1—P1—S1i113.28 (13)C13—C12—C11120.4 (4)
O2—P1—S1i113.27 (12)C13—C12—H12119.8
O1—P1—S2112.56 (12)C11—C12—H12119.8
O2—P1—S2112.10 (12)C14—C13—C12121.9 (5)
S1i—P1—S2110.28 (6)C14—C13—H13119.0
C1—O1—P1119.5 (2)C12—C13—H13119.0
C9—O2—P1119.2 (2)C13—C14—C15119.5 (5)
C17—N1—C21116.6 (3)C13—C14—H14120.2
C17—N1—Ni1121.2 (2)C15—C14—H14120.2
C21—N1—Ni1122.2 (2)C14—C15—C16119.0 (5)
O1—C1—C2107.7 (3)C14—C15—H15120.5
O1—C1—H1A110.2C16—C15—H15120.5
C2—C1—H1A110.2C11—C16—C15121.0 (4)
O1—C1—H1B110.2C11—C16—H16119.5
C2—C1—H1B110.2C15—C16—H16119.5
H1A—C1—H1B108.5N1—C17—C18122.9 (4)
C3—C2—C1111.1 (3)N1—C17—H17118.5
C3—C2—H2A109.4C18—C17—H17118.5
C1—C2—H2A109.4C17—C18—C19120.2 (4)
C3—C2—H2B109.4C17—C18—H18119.9
C1—C2—H2B109.4C19—C18—H18119.9
H2A—C2—H2B108.0C20—C19—C18117.0 (4)
C4—C3—C8118.7 (4)C20—C19—C22121.6 (4)
C4—C3—C2120.4 (4)C18—C19—C22121.4 (4)
C8—C3—C2120.9 (4)C19—C20—C21120.0 (4)
C5—C4—C3121.5 (5)C19—C20—H20120.0
C5—C4—H4119.2C21—C20—H20120.0
C3—C4—H4119.2N1—C21—C20123.3 (4)
C6—C5—C4120.1 (5)N1—C21—H21118.4
C6—C5—H5120.0C20—C21—H21118.4
C4—C5—H5120.0C19—C22—H22A109.5
C5—C6—C7120.0 (5)C19—C22—H22B109.5
C5—C6—H6120.0H22A—C22—H22B109.5
C7—C6—H6120.0C19—C22—H22C109.5
C6—C7—C8119.7 (5)H22A—C22—H22C109.5
C6—C7—H7120.1H22B—C22—H22C109.5
C8—C7—H7120.1

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2365).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Drew, M. G. B., Hobson, R. J., Mumba, P. P. E. M. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1569–1571.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Harrison, P. G. & Kikabhai, K. (1987). J. Chem. Soc. Dalton Trans. pp. 807–814.
  • Li, Z., Li, J. & Du, S. (2006). J. Mol. Struct.783, 116–121.
  • Liu, C. W., Pitts, J. T. & Fackler, J. P. (1997). Polyhedron, 16, 3899–3909.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography