PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1020–m1021.
Published online 2008 July 12. doi:  10.1107/S1600536808021004
PMCID: PMC2961943

Bis(μ-N-benzyl-N-methyl­dithio­carbamato)-1:2κ3 S,S′:S′;1:2κ3 S:S,S′-bis­[bis­(N-benzyl-N-methyl­dithio­carbamato-κ2 S,S′)thallium(III)]

Abstract

The molecule of the dinuclear title compound, [Tl2(C9H10NS2)6], possesses a crystallographically imposed centre of symmetry. Each TlIII atom is seven-coordinated by S atoms of four different dithio­carbamate anions in a distorted penta­gonal-bipyramidal coordination geometry. The crystal structure is stabilized by a C—H(...)S hydrogen-bond inter­action linking complex mol­ecules into chains running parallel to the b axis. Intramolecular C—H(...)S hydrogen bonds are also present.

Related literature

For the crystal structures of Tl-dithio­carbamate complexes, see: Abrahamson et al. (1975 [triangle]); Burschka (1982 [triangle]); Casas et al. (1994 [triangle]); Griffin et al. (1980 [triangle]); Ivanov et al. (2006 [triangle]); Jennische et al. (1972 [triangle]); Kepert et al. (1978 [triangle]); Nilson & Hesse (1969 [triangle]); Pritzkow & Jennische (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1020-scheme1.jpg

Experimental

Crystal data

  • [Tl2(C9H10NS2)6]
  • M r = 1586.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1020-efi1.jpg
  • a = 13.3326 (9) Å
  • b = 9.9280 (6) Å
  • c = 24.1379 (16) Å
  • β = 98.539 (2)°
  • V = 3159.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.53 mm−1
  • T = 296 (2) K
  • 0.27 × 0.24 × 0.23 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.248, T max = 0.282
  • 39462 measured reflections
  • 8268 independent reflections
  • 5534 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.044
  • S = 0.94
  • 8268 reflections
  • 334 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and SCHAKAL (Keller, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021004/at2589sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021004/at2589Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Thallium exhibits an interesting metallorganic chemistry with formal oxidation states of +1 and +3 and various coordination polyhedra. However, at the best of our knowledge, reports on the structural characterization of thallium dithiocarbamates are scarce. As part of our ongoing study on the chemistry of a series of new dithiocarbamato-containing metal derivatives, the dinuclear title complex was synthesized and its crystal structure is reported here.

The title compound (Fig. 1) possesses a crystallographically imposed centre of symmetry. Each thallium(III) metal centre exhibits seven-coordination provided by the sulfur atoms of four dithiocarbamate anions, two of which acting as bidentate chelating ligands and two as bidentate bridging ligands. The coordination geometry can be described as distorted pentagonal bipyramidal, with atoms S1, S3, S4, S5 and S6 defining the equatorial plane, and atoms S2 and S3i occupying the apical positions [symmetry code: (i) 1 - x, -y, -z]. The Tl···Tl separation in the dinuclear complex molecule is 3.9221 (2) Å. The values of the Tl—S bond lengths involving the bidentate chelating ligands (Table 1) range from 2.6210 (8) to 2.9240 (10) Å, in agreement with those observed in other Tl-dithiocarbamato complexes (Burschka, 1982; Kepert et al., 1978; Griffin et al., 1980; Abrahamson et al., 1975; Casas et al., 1994). The Tl—S bond lengths involving the bridging S3 atom [3.0242 (8) and 3.1605 (8) Å] are consistent with the values reported in the literature for similar thallium(I) derivatives (Ivanov et al., 2006; Jennische et al., 1972; Pritzkow & Jennische, 1975; Nilson & Hesse, 1969). The C—S bond lengths within the dithiocarbamate ligands [mean value 1.714 (3) Å] fall in a rather narrow range of values suggesting a substantial delocalization of the double bond. The short values of the thioureide C—N distances [mean value 1.339 (4) Å] indicate that the electron density is delocalized over the NCS2 groups and these bonds have a partial double bond character. In the IR spectrum of the title compound, the important stretching mode characteristic of thioureide C—N bond occurs at 1475 cm-1. Thallium(III) possesses completely filled d orbitals whereas charge transfer (CT) is fully allowed and hence intense CT absorption is observed. Intraligand transitions of the dithiocarbamate anions are also observed along with a ligand-metal charge transfer (LMCT). The conformation of the dithiocarbamate anions is stabilized by intramolecular C—H···S hydrogen bonding interactions (Table 2). In the crystal structure (Fig. 2), dinuclear complex molecules are linked by an intermolecular C—H···S hydrogen bond (Table 2) into chains running parallel to the b axis.

Experimental

Benzylmethylamine (6 mmol) and carbon disulfide (6 mmol) in ethanol (5 ml) were mixed under ice-cold conditions to obtain a yellow solution of N-benzyl-N-methyldithiocarbamic acid. An aqueous solution (2 ml) of TlF3 (2 mmol) was then added with constant stirring. The resulting precipitate was filtered off and dried in air. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Figures

Fig. 1.
View of the title dinuclear complex molecule with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity [Symmetry code: (i) = 1 - x, -y, -z].
Fig. 2.
View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds are omitted for clarity. Colour codes: Tl red, S yellow, N blue, C grey and H white.

Crystal data

[Tl2(C9H10NS2)6]F000 = 1560
Mr = 1586.57Dx = 1.668 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6832 reflections
a = 13.3326 (9) Åθ = 3.0–27.2º
b = 9.9280 (6) ŵ = 5.53 mm1
c = 24.1379 (16) ÅT = 296 (2) K
β = 98.539 (2)ºBlock, yellow
V = 3159.6 (4) Å30.27 × 0.24 × 0.23 mm
Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer8268 independent reflections
Radiation source: fine-focus sealed tube5534 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 296(2) Kθmax = 29.8º
ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Bruker, 1997)h = −18→18
Tmin = 0.248, Tmax = 0.282k = −13→13
39462 measured reflectionsl = −32→33

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.044  w = 1/[σ2(Fo2) + (0.0165P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.002
8268 reflectionsΔρmax = 0.45 e Å3
334 parametersΔρmin = −0.74 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Experimental. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Tl10.556603 (8)−0.057237 (10)0.075989 (4)0.04911 (4)
S10.40839 (7)−0.19940 (8)0.13240 (4)0.0762 (2)
S20.54015 (7)0.02867 (9)0.17692 (3)0.0734 (2)
S30.36641 (6)0.10572 (8)0.04008 (3)0.0615 (2)
S40.57292 (6)0.22115 (8)0.04598 (4)0.0722 (2)
S50.75951 (6)−0.00641 (8)0.10233 (4)0.0694 (2)
S60.67818 (6)−0.28177 (8)0.11090 (4)0.0738 (2)
N10.4118 (2)−0.0919 (3)0.23396 (12)0.0877 (9)
N20.4099 (2)0.3649 (2)0.05811 (9)0.0601 (6)
N30.8704 (2)−0.2290 (3)0.10423 (13)0.0879 (9)
C10.4483 (2)−0.0902 (3)0.18492 (12)0.0648 (8)
C20.3332 (4)−0.1872 (4)0.24476 (18)0.1292 (19)
H2A0.3525−0.22720.28150.155*
H2B0.3285−0.25890.21720.155*
C30.2298 (3)−0.1208 (4)0.24245 (16)0.0900 (12)
C40.1609 (4)−0.1736 (4)0.27471 (19)0.1262 (18)
H40.1788−0.24660.29830.151*
C50.0658 (4)−0.1170 (5)0.2714 (2)0.1196 (18)
H50.0189−0.15330.29220.143*
C60.0401 (4)−0.0078 (6)0.2379 (2)0.1240 (17)
H6−0.02360.03140.23630.149*
C70.1084 (3)0.0430 (4)0.20688 (19)0.1088 (14)
H70.09100.11740.18410.131*
C80.2029 (3)−0.0138 (4)0.20872 (17)0.0876 (11)
H80.24840.02130.18680.105*
C90.4454 (3)0.0057 (6)0.27812 (15)0.150 (2)
H9A0.4107−0.01060.30960.225*
H9B0.43030.09520.26420.225*
H9C0.5171−0.00320.28960.225*
C100.4463 (2)0.2424 (3)0.04907 (10)0.0550 (7)
C110.3016 (3)0.3908 (3)0.05803 (12)0.0743 (10)
H11A0.26270.31750.03900.089*
H11B0.28280.47290.03720.089*
C120.2743 (2)0.4050 (3)0.11678 (13)0.0607 (8)
C130.3135 (3)0.3233 (3)0.15949 (14)0.0784 (10)
H130.35790.25480.15300.094*
C140.2885 (3)0.3406 (4)0.21247 (15)0.0838 (10)
H140.31670.28420.24140.101*
C150.2231 (3)0.4387 (4)0.22273 (16)0.0859 (11)
H150.20610.45010.25840.103*
C160.1829 (3)0.5200 (4)0.17998 (19)0.1046 (14)
H160.13760.58740.18640.126*
C170.2083 (3)0.5040 (4)0.12737 (16)0.0862 (11)
H170.18040.56100.09860.103*
C180.4749 (3)0.4831 (3)0.07046 (13)0.0810 (11)
H18A0.45470.53150.10140.122*
H18B0.46860.54060.03820.122*
H18C0.54420.45480.07990.122*
C190.7783 (2)−0.1785 (3)0.10589 (12)0.0619 (8)
C200.9589 (3)−0.1455 (4)0.0978 (2)0.1137 (15)
H20A1.0093−0.15540.13090.136*
H20B0.9383−0.05170.09520.136*
C211.0065 (3)−0.1816 (4)0.0468 (2)0.0894 (11)
C221.1097 (3)−0.1881 (4)0.0502 (2)0.0982 (12)
H221.1502−0.16910.08410.118*
C231.1541 (5)−0.2218 (6)0.0053 (3)0.139 (2)
H231.2244−0.22510.00850.167*
C241.0969 (7)−0.2506 (6)−0.0441 (3)0.167 (3)
H241.1272−0.2774−0.07460.201*
C250.9920 (6)−0.2399 (7)−0.0489 (3)0.191 (3)
H250.9517−0.2572−0.08310.229*
C260.9477 (4)−0.2037 (6)−0.0031 (3)0.145 (2)
H260.8777−0.1945−0.00630.174*
C270.8893 (3)−0.3733 (4)0.1102 (2)0.1227 (16)
H27A0.9593−0.39140.10780.184*
H27B0.8470−0.42060.08090.184*
H27C0.8743−0.40290.14600.184*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Tl10.05321 (7)0.04376 (6)0.05131 (6)0.00237 (6)0.01089 (4)−0.00302 (6)
S10.0853 (6)0.0551 (5)0.0967 (6)−0.0087 (4)0.0411 (5)−0.0095 (5)
S20.0672 (6)0.0906 (7)0.0610 (5)−0.0032 (5)0.0052 (4)−0.0268 (4)
S30.0613 (5)0.0560 (4)0.0684 (5)0.0026 (4)0.0135 (4)−0.0121 (4)
S40.0686 (6)0.0494 (4)0.1041 (7)0.0008 (4)0.0310 (5)0.0039 (4)
S50.0575 (5)0.0601 (5)0.0907 (6)−0.0056 (4)0.0118 (4)−0.0074 (4)
S60.0661 (6)0.0595 (5)0.0983 (6)0.0029 (4)0.0203 (5)0.0230 (5)
N10.086 (2)0.116 (3)0.0671 (19)0.0459 (19)0.0313 (16)0.0198 (18)
N20.084 (2)0.0478 (15)0.0493 (14)0.0118 (14)0.0120 (13)−0.0068 (11)
N30.0580 (19)0.076 (2)0.127 (3)0.0062 (16)0.0076 (17)−0.0008 (18)
C10.067 (2)0.072 (2)0.0577 (18)0.0242 (16)0.0172 (16)0.0057 (15)
C20.171 (5)0.106 (3)0.135 (4)0.058 (3)0.105 (4)0.064 (3)
C30.113 (3)0.065 (2)0.109 (3)0.006 (2)0.072 (3)0.000 (2)
C40.169 (5)0.081 (3)0.155 (4)−0.001 (3)0.114 (4)−0.009 (3)
C50.132 (4)0.097 (3)0.152 (4)−0.032 (3)0.094 (4)−0.027 (3)
C60.083 (3)0.144 (4)0.153 (5)−0.022 (3)0.047 (3)−0.034 (4)
C70.081 (3)0.115 (4)0.133 (4)0.005 (3)0.025 (3)0.002 (3)
C80.077 (3)0.079 (3)0.114 (3)0.002 (2)0.040 (2)0.002 (2)
C90.117 (4)0.282 (6)0.050 (2)0.074 (4)0.009 (2)−0.038 (3)
C100.073 (2)0.0519 (17)0.0401 (15)0.0085 (15)0.0079 (14)−0.0025 (13)
C110.087 (3)0.069 (2)0.063 (2)0.0315 (19)0.0023 (18)−0.0057 (16)
C120.062 (2)0.0532 (18)0.066 (2)0.0076 (15)0.0068 (16)−0.0115 (15)
C130.103 (3)0.063 (2)0.070 (2)0.025 (2)0.016 (2)−0.0013 (18)
C140.102 (3)0.081 (3)0.069 (2)−0.004 (2)0.017 (2)0.007 (2)
C150.069 (2)0.114 (3)0.080 (2)−0.009 (2)0.027 (2)−0.019 (3)
C160.089 (3)0.126 (4)0.105 (3)0.039 (3)0.036 (3)−0.017 (3)
C170.092 (3)0.086 (2)0.083 (3)0.035 (2)0.020 (2)−0.002 (2)
C180.133 (3)0.0469 (18)0.068 (2)−0.003 (2)0.033 (2)−0.0070 (16)
C190.0542 (19)0.071 (2)0.0594 (18)0.0083 (17)0.0047 (15)0.0032 (16)
C200.052 (2)0.113 (3)0.175 (4)−0.002 (2)0.012 (3)−0.035 (3)
C210.064 (3)0.073 (2)0.132 (4)−0.005 (2)0.014 (3)0.002 (2)
C220.064 (3)0.095 (3)0.137 (4)0.006 (2)0.021 (3)0.022 (3)
C230.133 (5)0.124 (4)0.179 (6)0.011 (4)0.085 (5)0.043 (4)
C240.238 (9)0.129 (5)0.161 (6)−0.053 (6)0.116 (7)0.003 (5)
C250.223 (9)0.207 (7)0.145 (6)−0.120 (7)0.039 (6)0.001 (5)
C260.102 (4)0.170 (5)0.158 (5)−0.049 (4)0.006 (4)0.008 (4)
C270.093 (3)0.086 (3)0.188 (5)0.038 (2)0.017 (3)0.032 (3)

Geometric parameters (Å, °)

Tl1—S12.9241 (8)C9—H9A0.9600
Tl1—S22.6210 (8)C9—H9B0.9600
Tl1—S33.0242 (8)C9—H9C0.9600
Tl1—S42.8736 (8)C11—C121.522 (4)
Tl1—S52.7325 (9)C11—H11A0.9700
Tl1—S62.8109 (8)C11—H11B0.9700
Tl1—S3i3.1605 (8)C12—C131.354 (4)
S1—C11.692 (3)C12—C171.369 (4)
S2—C11.732 (3)C13—C141.379 (4)
S3—C101.719 (3)C13—H130.9300
S3—Tl1i3.1605 (8)C14—C151.354 (4)
S4—C101.714 (3)C14—H140.9300
S5—C191.727 (3)C15—C161.356 (5)
S6—C191.702 (3)C15—H150.9300
N1—C11.345 (4)C16—C171.371 (5)
N1—C91.461 (5)C16—H160.9300
N1—C21.463 (5)C17—H170.9300
N2—C101.339 (3)C18—H18A0.9600
N2—C181.463 (4)C18—H18B0.9600
N2—C111.466 (4)C18—H18C0.9600
N3—C191.332 (4)C20—C211.510 (5)
N3—C271.459 (4)C20—H20A0.9700
N3—C201.469 (4)C20—H20B0.9700
C2—C31.522 (5)C21—C261.352 (6)
C2—H2A0.9700C21—C221.368 (5)
C2—H2B0.9700C22—C231.351 (6)
C3—C81.354 (5)C22—H220.9300
C3—C41.392 (5)C23—C241.347 (7)
C4—C51.377 (6)C23—H230.9300
C4—H40.9300C24—C251.390 (8)
C5—C61.366 (6)C24—H240.9300
C5—H50.9300C25—C261.377 (7)
C6—C71.360 (5)C25—H250.9300
C6—H60.9300C26—H260.9300
C7—C81.374 (5)C27—H27A0.9600
C7—H70.9300C27—H27B0.9600
C8—H80.9300C27—H27C0.9600
S1—Tl1—S378.22 (2)H9A—C9—H9C109.5
S4—Tl1—S360.32 (2)H9B—C9—H9C109.5
S5—Tl1—S476.80 (3)N2—C10—S4120.1 (2)
S5—Tl1—S664.52 (3)N2—C10—S3120.3 (2)
S6—Tl1—S182.94 (2)S4—C10—S3119.54 (16)
S2—Tl1—S3i163.05 (2)N2—C11—C12112.7 (2)
S2—Tl1—S586.57 (3)N2—C11—H11A109.0
S2—Tl1—S695.94 (3)C12—C11—H11A109.0
S2—Tl1—S486.63 (3)N2—C11—H11B109.0
S6—Tl1—S4140.94 (2)C12—C11—H11B109.0
S2—Tl1—S164.44 (3)H11A—C11—H11B107.8
S5—Tl1—S1134.02 (3)C13—C12—C17118.3 (3)
S4—Tl1—S1131.55 (2)C13—C12—C11122.4 (3)
S2—Tl1—S384.84 (2)C17—C12—C11119.3 (3)
S5—Tl1—S3136.63 (2)C12—C13—C14120.8 (3)
S6—Tl1—S3158.72 (2)C12—C13—H13119.6
S5—Tl1—S3i78.10 (2)C14—C13—H13119.6
S6—Tl1—S3i84.05 (2)C15—C14—C13120.7 (3)
S4—Tl1—S3i82.89 (2)C15—C14—H14119.7
S1—Tl1—S3i132.08 (2)C13—C14—H14119.7
S3—Tl1—S3i101.319 (18)C14—C15—C16118.8 (3)
C1—S1—Tl183.15 (11)C14—C15—H15120.6
C1—S2—Tl192.29 (10)C16—C15—H15120.6
C10—S3—Tl184.77 (10)C15—C16—C17120.8 (4)
C10—S3—Tl1i87.45 (9)C15—C16—H16119.6
Tl1—S3—Tl1i78.681 (18)C17—C16—H16119.6
C10—S4—Tl189.75 (10)C12—C17—C16120.7 (4)
C19—S5—Tl187.73 (10)C12—C17—H17119.7
C19—S6—Tl185.68 (10)C16—C17—H17119.7
C1—N1—C9121.5 (4)N2—C18—H18A109.5
C1—N1—C2121.8 (3)N2—C18—H18B109.5
C9—N1—C2116.7 (3)H18A—C18—H18B109.5
C10—N2—C18122.9 (3)N2—C18—H18C109.5
C10—N2—C11122.6 (3)H18A—C18—H18C109.5
C18—N2—C11114.4 (2)H18B—C18—H18C109.5
C19—N3—C27120.9 (3)N3—C19—S6120.8 (2)
C19—N3—C20123.3 (3)N3—C19—S5119.9 (2)
C27—N3—C20115.8 (3)S6—C19—S5119.32 (17)
N1—C1—S1122.4 (3)N3—C20—C21113.2 (3)
N1—C1—S2117.4 (3)N3—C20—H20A108.9
S1—C1—S2120.11 (17)C21—C20—H20A108.9
N1—C2—C3112.5 (3)N3—C20—H20B108.9
N1—C2—H2A109.1C21—C20—H20B108.9
C3—C2—H2A109.1H20A—C20—H20B107.8
N1—C2—H2B109.1C26—C21—C22119.4 (5)
C3—C2—H2B109.1C26—C21—C20120.4 (4)
H2A—C2—H2B107.8C22—C21—C20120.2 (4)
C8—C3—C4119.6 (4)C23—C22—C21121.2 (5)
C8—C3—C2121.3 (3)C23—C22—H22119.4
C4—C3—C2119.1 (4)C21—C22—H22119.4
C5—C4—C3119.4 (4)C24—C23—C22120.3 (6)
C5—C4—H4120.3C24—C23—H23119.8
C3—C4—H4120.3C22—C23—H23119.8
C6—C5—C4120.4 (4)C23—C24—C25119.2 (7)
C6—C5—H5119.8C23—C24—H24120.4
C4—C5—H5119.8C25—C24—H24120.4
C7—C6—C5119.4 (5)C26—C25—C24119.9 (7)
C7—C6—H6120.3C26—C25—H25120.1
C5—C6—H6120.3C24—C25—H25120.1
C6—C7—C8121.1 (5)C21—C26—C25119.8 (6)
C6—C7—H7119.5C21—C26—H26120.1
C8—C7—H7119.5C25—C26—H26120.1
C3—C8—C7120.0 (4)N3—C27—H27A109.5
C3—C8—H8120.0N3—C27—H27B109.5
C7—C8—H8120.0H27A—C27—H27B109.5
N1—C9—H9A109.5N3—C27—H27C109.5
N1—C9—H9B109.5H27A—C27—H27C109.5
H9A—C9—H9B109.5H27B—C27—H27C109.5
N1—C9—H9C109.5

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2B···S10.972.513.030 (5)113
C11—H11A···S30.972.513.009 (3)112
C18—H18C···S40.962.513.008 (3)112
C20—H20B···S50.972.463.012 (4)116
C18—H18A···S1ii0.962.873.654 (3)140

Symmetry codes: (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2589).

References

  • Abrahamson, H., Heiman, J. R. & Pignolet, L. H. (1975). Inorg. Chem.14, 2070–2075.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burschka, C. H. (1982). Z. Anorg. Allg. Chem.485, 217–224.
  • Casas, J. S., Castaño, M. V., Freire, C., Sanchez, A., Sordo, J., Castellano, E. E. & Zukerman-Schpector, J. (1994). Inorg. Chim. Acta, 216, 15–20.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Griffin, R. T., Henrick, K., Matthews, R. W. & McPartlin, M. (1980). J. Chem. Soc. Dalton Trans. pp. 1550–1555.
  • Ivanov, A. V., Bredyuk, O. A., Gerasimenko, A. V., Lutsenko, I. A., Antsutkin, O. N. & Forsling, W. (2006). Koord. Khim.32, 354–364.
  • Jennische, P., Olin, A. & Hesse, R. (1972). Acta Chem. Scand.A26, 2799–2812.
  • Keller, E. (1997). SCHAKAL97 University of Freiburg, Germany.
  • Kepert, D. L., Raston, C. L., Roberts, N. K. & White, A. H. (1978). Aust. J. Chem.31, 1927–1932.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Nilson, L. & Hesse, R. (1969). Acta Chem. Scand.A23, 1951–1965.
  • Pritzkow, H. & Jennische, P. (1975). Acta Chem. Scand.A29, 60–70.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography