PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1012.
Published online 2008 July 9. doi:  10.1107/S1600536808020461
PMCID: PMC2961935

Dichloridobis(3,5-dimethyl-1H-pyrazol-4-amine-κN 2)cobalt(II)

Abstract

In the title compound, [CoCl2(C5H9N3)2], the CoII atom adopts a slightly distorted tetra­hedral coordination geometry provided by two chloride anions and two N atoms from the organic ligands. The dihedral angle between the pyrazole rings is 85.91 (10)°. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H(...)N and N—H(...)Cl hydrogen-bonding inter­actions.

Related literature

For the crystal structures of related pyrazole compounds, see: Francisco et al. (1980 [triangle]); Murray et al. (1988 [triangle]); Zhao & Eichhorn (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1012-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C5H9N3)2]
  • M r = 352.13
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1012-efi1.jpg
  • a = 9.182 (3) Å
  • b = 9.191 (4) Å
  • c = 10.085 (3) Å
  • α = 94.807 (13)°
  • β = 106.105 (4)°
  • γ = 107.814 (12)°
  • V = 765.1 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.47 mm−1
  • T = 293 (2) K
  • 0.25 × 0.15 × 0.04 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.836, T max = 0.940
  • 7916 measured reflections
  • 3456 independent reflections
  • 2579 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.102
  • S = 0.98
  • 3456 reflections
  • 176 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020461/rz2230sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020461/rz2230Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Pyrazolylmethane late-transition-metal complexes of the first row have shown great potential for the construction of magnetic devices. In the course of our studies of the coordination chemistry of these ligands with cobalt, the title compound was synthesized and we report its crystal structure here.

There have been a few crystal structures reported to date for four-coordinate metal complexes containing two coordinated pyrazoles and two coordinated halides, for examples, dichlorobis(1- phenyl-3,5-dimethylpyrazole)copper(II) (Francisco et al., 1980;), dibromobis(3,5-diphenylpyrazole)copper(II) (Murray et al., 1988) and dichlorobis(3,5-dimethylpyrazole) copper(II) (Zhao & Eichhorn, 2005). The Co—N (2.003 (2) and 2.006 (2) Å) and Co—Cl bond lengths (2.2373 (10) and 2.2829 (11) Å) are within the ranges expected. The dihedral angle formed by the pyrazole rings is 85.91 (10)°. An intramolecular C—H···Cl hydrogen bond (Table 1) helps to stabilzie the molecular conformation. In the crystal structure, molecules are linked by intermolecular N—H···N and N—H···Cl hydrogen bonding interactions to form a three-dimensional network (Table 1).

Experimental

3,5-Dimethyl-1H-pyrazol-4-amine (0.111 g, 1 mmol) was dissolved in ethanol (5 ml) and CoCl2 (0.127 g, 1 mmol) in aqueous solution (5 ml) was added with stirring. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days

Refinement

All H atoms were located in a difference Fourier map and refined using the riding-atom approximation, with C—H = 0.96 Å, N—H = 0.86-0.90 Å, and with Uiso(H) = 1.2 Ueq (N) or 1.5 Ueq (C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[CoCl2(C5H9N3)2]Z = 2
Mr = 352.13F000 = 362
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.182 (3) ÅCell parameters from 2030 reflections
b = 9.191 (4) Åθ = 2.7–27.5º
c = 10.085 (3) ŵ = 1.47 mm1
α = 94.807 (13)ºT = 293 (2) K
β = 106.105 (4)ºPlate, colourless
γ = 107.814 (12)º0.25 × 0.15 × 0.04 mm
V = 765.1 (5) Å3

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer3456 independent reflections
Radiation source: fine-focus sealed tube2579 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 2.8º
CCD_Profile_fitting scansh = −11→11
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.836, Tmax = 0.940l = −13→13
7916 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.102  w = 1/[σ2(Fo2) + (0.0471P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3456 reflectionsΔρmax = 0.35 e Å3
176 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.36013 (4)0.23415 (4)0.15884 (4)0.03042 (13)
Cl10.21996 (10)0.22767 (10)−0.06317 (8)0.0469 (2)
Cl20.24095 (9)0.03437 (9)0.25653 (8)0.0412 (2)
C10.4561 (3)0.5640 (3)0.3357 (3)0.0286 (6)
C20.3704 (3)0.6573 (3)0.3698 (3)0.0287 (6)
C30.2086 (4)0.5675 (3)0.3138 (3)0.0343 (7)
C40.6339 (4)0.6063 (4)0.3676 (3)0.0423 (8)
H4A0.66030.51340.35940.064*
H4B0.68790.66460.46150.064*
H4C0.66810.66830.30250.064*
C50.0604 (4)0.6012 (4)0.3138 (4)0.0548 (10)
H5A−0.03200.52350.24610.082*
H5B0.06870.70170.29000.082*
H5C0.04860.60010.40540.082*
C60.6694 (3)0.2278 (3)0.0980 (3)0.0328 (6)
C70.7967 (3)0.1765 (3)0.1557 (3)0.0289 (6)
C80.7838 (3)0.1407 (3)0.2824 (3)0.0322 (6)
C90.6290 (5)0.2806 (5)−0.0382 (4)0.0587 (10)
H9A0.51460.2584−0.07410.088*
H9B0.66210.2270−0.10390.088*
H9C0.68410.3905−0.02490.088*
C100.8851 (4)0.0783 (4)0.3884 (3)0.0491 (9)
H10A0.83900.05800.46240.074*
H10B0.99230.15320.42670.074*
H10C0.8894−0.01640.34450.074*
N10.3517 (3)0.4248 (3)0.2644 (2)0.0325 (5)
N20.2026 (3)0.4300 (3)0.2516 (3)0.0382 (6)
H2A0.11440.35400.20850.046*
N30.4325 (3)0.8117 (3)0.4457 (3)0.0368 (6)
H3A0.39340.87230.39070.044*
H3B0.54070.84730.46750.044*
N40.5806 (3)0.2228 (3)0.1851 (2)0.0335 (6)
N50.6537 (3)0.1685 (3)0.2974 (2)0.0342 (6)
H5D0.62070.15410.36870.041*
N60.9218 (3)0.1729 (3)0.1011 (3)0.0362 (6)
H6A0.89240.17820.00930.043*
H6B0.94130.08350.11040.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0280 (2)0.0327 (2)0.0333 (2)0.01479 (17)0.00943 (16)0.00507 (16)
Cl10.0451 (5)0.0591 (5)0.0349 (4)0.0222 (4)0.0057 (3)0.0085 (4)
Cl20.0346 (4)0.0415 (4)0.0474 (5)0.0122 (3)0.0119 (3)0.0154 (3)
C10.0293 (15)0.0267 (15)0.0297 (15)0.0091 (11)0.0094 (11)0.0068 (11)
C20.0342 (16)0.0288 (15)0.0249 (14)0.0114 (12)0.0116 (11)0.0057 (11)
C30.0357 (17)0.0332 (17)0.0374 (17)0.0173 (13)0.0117 (13)0.0038 (13)
C40.0331 (17)0.0422 (19)0.049 (2)0.0115 (14)0.0106 (14)0.0073 (15)
C50.039 (2)0.048 (2)0.078 (3)0.0178 (16)0.0199 (18)−0.0025 (18)
C60.0285 (16)0.0401 (17)0.0332 (16)0.0120 (12)0.0133 (12)0.0117 (13)
C70.0249 (14)0.0283 (15)0.0322 (15)0.0085 (11)0.0090 (11)0.0005 (11)
C80.0262 (15)0.0392 (17)0.0314 (16)0.0140 (12)0.0075 (11)0.0031 (12)
C90.056 (2)0.096 (3)0.053 (2)0.045 (2)0.0306 (18)0.044 (2)
C100.049 (2)0.070 (3)0.0416 (19)0.0387 (18)0.0132 (15)0.0163 (17)
N10.0281 (13)0.0320 (14)0.0392 (14)0.0123 (10)0.0121 (10)0.0027 (11)
N20.0237 (13)0.0328 (14)0.0517 (17)0.0064 (10)0.0092 (11)−0.0040 (12)
N30.0401 (15)0.0314 (14)0.0364 (14)0.0109 (11)0.0113 (11)0.0016 (11)
N40.0322 (14)0.0442 (15)0.0313 (14)0.0198 (11)0.0122 (10)0.0122 (11)
N50.0347 (14)0.0486 (16)0.0309 (13)0.0232 (12)0.0165 (10)0.0146 (11)
N60.0297 (14)0.0422 (15)0.0398 (15)0.0145 (11)0.0148 (11)0.0033 (11)

Geometric parameters (Å, °)

Co1—N42.003 (2)C6—C91.483 (4)
Co1—N12.006 (2)C7—C81.373 (4)
Co1—Cl12.2373 (10)C7—N61.412 (3)
Co1—Cl22.2829 (11)C8—N51.340 (3)
C1—N11.337 (3)C8—C101.488 (4)
C1—C21.409 (4)C9—H9A0.9600
C1—C41.490 (4)C9—H9B0.9600
C2—C31.384 (4)C9—H9C0.9600
C2—N31.416 (3)C10—H10A0.9600
C3—N21.341 (4)C10—H10B0.9600
C3—C51.486 (4)C10—H10C0.9600
C4—H4A0.9600N1—N21.355 (3)
C4—H4B0.9600N2—H2A0.8600
C4—H4C0.9600N3—H3A0.9000
C5—H5A0.9600N3—H3B0.9000
C5—H5B0.9600N4—N51.364 (3)
C5—H5C0.9600N5—H5D0.8600
C6—N41.349 (3)N6—H6A0.9001
C6—C71.391 (4)N6—H6B0.9000
N4—Co1—N1116.07 (10)N5—C8—C7107.2 (2)
N4—Co1—Cl1114.54 (7)N5—C8—C10122.7 (3)
N1—Co1—Cl1103.32 (8)C7—C8—C10130.0 (3)
N4—Co1—Cl2103.72 (7)C6—C9—H9A109.5
N1—Co1—Cl2104.88 (8)C6—C9—H9B109.5
Cl1—Co1—Cl2114.26 (4)H9A—C9—H9B109.5
N1—C1—C2109.4 (2)C6—C9—H9C109.5
N1—C1—C4122.5 (2)H9A—C9—H9C109.5
C2—C1—C4128.1 (3)H9B—C9—H9C109.5
C3—C2—C1106.1 (2)C8—C10—H10A109.5
C3—C2—N3125.5 (2)C8—C10—H10B109.5
C1—C2—N3128.4 (3)H10A—C10—H10B109.5
N2—C3—C2106.3 (2)C8—C10—H10C109.5
N2—C3—C5122.1 (3)H10A—C10—H10C109.5
C2—C3—C5131.6 (3)H10B—C10—H10C109.5
C1—C4—H4A109.5C1—N1—N2106.1 (2)
C1—C4—H4B109.5C1—N1—Co1137.05 (19)
H4A—C4—H4B109.5N2—N1—Co1116.27 (17)
C1—C4—H4C109.5C3—N2—N1112.1 (2)
H4A—C4—H4C109.5C3—N2—H2A124.0
H4B—C4—H4C109.5N1—N2—H2A124.0
C3—C5—H5A109.5C2—N3—H3A109.0
C3—C5—H5B109.5C2—N3—H3B109.1
H5A—C5—H5B109.5H3A—N3—H3B108.0
C3—C5—H5C109.5C6—N4—N5105.4 (2)
H5A—C5—H5C109.5C6—N4—Co1132.8 (2)
H5B—C5—H5C109.5N5—N4—Co1120.26 (18)
N4—C6—C7109.9 (3)C8—N5—N4111.3 (2)
N4—C6—C9122.4 (3)C8—N5—H5D124.3
C7—C6—C9127.7 (3)N4—N5—H5D124.3
C8—C7—C6106.2 (2)C7—N6—H6A109.9
C8—C7—N6126.4 (3)C7—N6—H6B109.9
C6—C7—N6127.3 (3)H6A—N6—H6B108.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl10.962.673.570 (5)157
N2—H2A···N6i0.861.982.835 (3)175
N5—H5D···N3ii0.862.082.919 (4)164
N3—H3A···Cl2iii0.902.563.452 (3)169
N6—H6B···Cl1iv0.902.723.457 (3)140

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2230).

References

  • Francisco, R. H. P., Lechat, J. R., Massabni, A. C., Melios, C. B. & Molina, M. (1980). J. Coord. Chem.10, 149–153.
  • Murray, J. J., Raptis, R. G. & Fackler, J. P. Jr (1988). Inorg. Chem.27, 26–33.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, N. & Eichhorn, D. M. (2005). Acta Cryst. E61, m822–m823.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography