PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1009.
Published online 2008 July 9. doi:  10.1107/S1600536808020497
PMCID: PMC2961932

Bis{2-[3-(dimethyl­amino)propyl­imino­meth­yl]-6-methoxy­phenolato-κ3 N,N′,O 1}nickel(II)

Abstract

The centrosymmetric title complex, [Ni(C13H19N2O2)2], is a mononuclear nickel(II) complex. The NiII atom is coordinated by four N atoms and two O atoms of two deprotonated Schiff base ligands, forming a slightly distorted octa­hedral coordination configuration, in which the tertiary N atoms occupy the axial positions.

Related literature

For related literature, see: Choudhury et al. (2001 [triangle]); Das et al. (1997 [triangle]); Davies et al. (1973 [triangle]); Feng (2003 [triangle]); Li & Wang (2007 [triangle]); Pariya et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1009-scheme1.jpg

Experimental

Crystal data

  • [Ni(C13H19N2O2)2]
  • M r = 529.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1009-efi1.jpg
  • a = 7.4758 (15) Å
  • b = 8.5571 (17) Å
  • c = 10.995 (2) Å
  • α = 78.36 (3)°
  • β = 73.98 (3)°
  • γ = 73.73 (3)°
  • V = 643.0 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 296 (2) K
  • 0.35 × 0.28 × 0.26 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.766, T max = 0.814
  • 10449 measured reflections
  • 2937 independent reflections
  • 2727 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.077
  • S = 1.00
  • 2937 reflections
  • 160 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020497/at2571sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020497/at2571Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

There is considerable interest in the synthesis of multidentate Schiff base ligands for their versatile coordination behavior to metal ions and wide application in biological systems (Das et al., 1997). Metal complexes with tetradentate N2O2 and tridentate N2O Schiff base ligands derived from salicylaldehyde have been well studied in the past, such as [Ni(C12H18N2O2)2Cl2] (Feng, 2003), [Mn(C18H17N2O4)] (Davies et al., 1973) and [Ni(Me2NCH2CH2CH2N=CHC6H4O)2] (Choudhury et al., 2001). The title complex, [Ni(C13H19N2O2)2], has a crystallograpic center with the Ni atom situated at the center of (1/2, 0, 1/2). As illustrated in Fig. 1, the center NiII ion is octahedrally coordinated by two tridentate chelate ligands in a meridional arrangement resulting in a slightly distorted octahedral geometry. The equatorial plane is formed by two imine nitrogen atoms (N1 and N1i) and two deprotonated phenolate oxygen atoms (O1 and O1i) with the deviation of the metal ion of 0.003 (1) Å. The axial positions are occupied by the tertiary nitrogen atoms (N2 and N2i). Like other reported structures, (Li & Wang, 2007; Pariya et al., 1995), the axial Ni(1)—N(2) distance (2.308 (1) Å) is larger than the equatorial Ni(1)—N(1) distance (2.055 (1) Å). The bond angles around the NiII ion also deviate slightly from the ideal octahedron geometry. Angles involving the atoms in the trans positions are 180° but those invoving the cis-atoms vary from 81.07 (6)–98.96 (6)°.

Experimental

3-methoxysalicylaldehyde (2.0 mmol) and 3-dimenthylaminopropylamine (2.0 mmol) in 15 ml of methyl alcohol were stirred for 4 h. NiCl2.4H2O (1.0 mmol) was added and stirred for 10 h. The resulting solution was placed in a refrigerator at 263 K for 10 days, and the crystals were filtered off, giving orange crystals of the title complex for X-ray analysis.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
A view of the molecule of (I), showing the atom-labelling scheme, displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) -x + 1,-y,-z + 1]

Crystal data

[Ni(C13H19N2O2)2]Z = 1
Mr = 529.31F000 = 282
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.4758 (15) ÅCell parameters from 10453 reflections
b = 8.5571 (17) Åθ = 1.9–27.5º
c = 10.995 (2) ŵ = 0.79 mm1
α = 78.36 (3)ºT = 296 (2) K
β = 73.98 (3)ºBlock, orange
γ = 73.73 (3)º0.35 × 0.28 × 0.26 mm
V = 643.0 (2) Å3

Data collection

Bruker APEXII area-detector diffractometer2937 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 296(2) Kθmax = 27.5º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.766, Tmax = 0.814k = −10→11
10449 measured reflectionsl = −14→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.077  w = 1/[σ2(Fo2) + (0.0466P)2 + 0.1331P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2937 reflectionsΔρmax = 0.32 e Å3
160 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.00000.50000.03138 (10)
O10.57408 (15)0.09660 (13)0.62529 (9)0.0365 (2)
O20.73982 (18)0.1105 (2)0.80263 (12)0.0627 (4)
N10.22745 (17)0.14317 (15)0.55226 (12)0.0371 (3)
N20.5262 (2)0.22458 (15)0.34548 (12)0.0399 (3)
C10.4656 (2)0.17196 (17)0.71970 (13)0.0346 (3)
C20.5492 (2)0.1879 (2)0.81787 (15)0.0439 (4)
C30.4433 (3)0.2733 (2)0.91789 (16)0.0561 (5)
H3A0.50180.28270.97970.067*
C40.2490 (3)0.3462 (3)0.92760 (17)0.0611 (5)
H4A0.17900.40610.99440.073*
C50.1622 (3)0.3292 (2)0.83891 (16)0.0502 (4)
H5A0.03220.37710.84630.060*
C60.2657 (2)0.24013 (18)0.73553 (14)0.0391 (3)
C70.1632 (2)0.22884 (19)0.64567 (15)0.0404 (3)
H7A0.03700.29000.65620.048*
C80.1073 (2)0.1771 (2)0.46023 (16)0.0471 (4)
H8A−0.02650.21360.50260.057*
H8B0.12260.07800.42460.057*
C90.1672 (3)0.3098 (2)0.35454 (18)0.0560 (5)
H9A0.15080.40730.39260.067*
H9B0.08090.33760.29760.067*
C100.3716 (3)0.2666 (2)0.27522 (15)0.0496 (4)
H10A0.38500.17400.23220.059*
H10B0.39140.35880.20980.059*
C110.7109 (3)0.1849 (2)0.25224 (16)0.0520 (4)
H11A0.72300.27770.18760.078*
H11B0.71640.09220.21350.078*
H11C0.81370.15900.29500.078*
C120.5251 (3)0.3671 (2)0.40162 (16)0.0506 (4)
H12A0.53610.45880.33570.076*
H12B0.63110.34050.44140.076*
H12C0.40730.39500.46440.076*
C130.8151 (3)0.0722 (3)0.9111 (2)0.0726 (6)
H13A0.94870.01880.88850.109*
H13B0.74800.00030.97440.109*
H13C0.80010.17140.94490.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.03755 (15)0.03032 (15)0.02764 (14)−0.00398 (10)−0.01031 (10)−0.00902 (9)
O10.0411 (5)0.0390 (5)0.0316 (5)−0.0064 (4)−0.0097 (4)−0.0126 (4)
O20.0516 (7)0.1037 (11)0.0382 (6)−0.0142 (7)−0.0142 (5)−0.0222 (7)
N10.0390 (6)0.0359 (6)0.0359 (6)−0.0029 (5)−0.0125 (5)−0.0069 (5)
N20.0574 (8)0.0333 (6)0.0321 (6)−0.0133 (6)−0.0123 (5)−0.0053 (5)
C10.0487 (8)0.0283 (7)0.0271 (6)−0.0097 (6)−0.0087 (6)−0.0042 (5)
C20.0555 (9)0.0490 (9)0.0309 (7)−0.0158 (7)−0.0100 (6)−0.0088 (6)
C30.0760 (12)0.0648 (12)0.0332 (8)−0.0167 (10)−0.0136 (8)−0.0180 (8)
C40.0814 (13)0.0576 (11)0.0378 (9)−0.0024 (10)−0.0058 (8)−0.0231 (8)
C50.0587 (10)0.0421 (9)0.0403 (8)0.0025 (7)−0.0056 (7)−0.0134 (7)
C60.0506 (8)0.0301 (7)0.0328 (7)−0.0034 (6)−0.0077 (6)−0.0072 (6)
C70.0409 (7)0.0342 (7)0.0404 (8)0.0014 (6)−0.0091 (6)−0.0078 (6)
C80.0410 (8)0.0518 (10)0.0497 (9)0.0008 (7)−0.0196 (7)−0.0135 (8)
C90.0695 (11)0.0444 (9)0.0560 (10)0.0036 (8)−0.0367 (9)−0.0040 (8)
C100.0780 (12)0.0395 (8)0.0349 (8)−0.0130 (8)−0.0244 (8)0.0008 (6)
C110.0709 (11)0.0474 (9)0.0374 (8)−0.0225 (8)−0.0044 (8)−0.0050 (7)
C120.0792 (12)0.0354 (8)0.0430 (9)−0.0203 (8)−0.0159 (8)−0.0067 (7)
C130.0625 (12)0.1093 (19)0.0514 (11)−0.0211 (12)−0.0217 (9)−0.0104 (11)

Geometric parameters (Å, °)

Ni1—O12.0061 (11)C5—C61.416 (2)
Ni1—O1i2.0061 (11)C5—H5A0.9300
Ni1—N12.0547 (14)C6—C71.439 (2)
Ni1—N1i2.0547 (14)C7—H7A0.9300
Ni1—N2i2.3081 (15)C8—C91.518 (3)
Ni1—N22.3081 (15)C8—H8A0.9700
O1—C11.2899 (17)C8—H8B0.9700
O2—C21.372 (2)C9—C101.520 (3)
O2—C131.399 (2)C9—H9A0.9700
N1—C71.287 (2)C9—H9B0.9700
N1—C81.467 (2)C10—H10A0.9700
N2—C121.471 (2)C10—H10B0.9700
N2—C111.473 (2)C11—H11A0.9600
N2—C101.487 (2)C11—H11B0.9600
C1—C61.418 (2)C11—H11C0.9600
C1—C21.433 (2)C12—H12A0.9600
C2—C31.375 (2)C12—H12B0.9600
C3—C41.394 (3)C12—H12C0.9600
C3—H3A0.9300C13—H13A0.9600
C4—C51.361 (3)C13—H13B0.9600
C4—H4A0.9300C13—H13C0.9600
O1—Ni1—O1i180.0C5—C6—C7117.77 (15)
O1—Ni1—N188.00 (5)C1—C6—C7122.05 (13)
O1i—Ni1—N192.00 (5)N1—C7—C6126.96 (14)
O1—Ni1—N1i92.00 (5)N1—C7—H7A116.5
O1i—Ni1—N1i88.00 (5)C6—C7—H7A116.5
N1—Ni1—N1i180.00 (7)N1—C8—C9108.79 (14)
O1—Ni1—N2i87.10 (5)N1—C8—H8A109.9
O1i—Ni1—N2i92.90 (5)C9—C8—H8A109.9
N1—Ni1—N2i98.96 (6)N1—C8—H8B109.9
N1i—Ni1—N2i81.04 (6)C9—C8—H8B109.9
O1—Ni1—N292.90 (5)H8A—C8—H8B108.3
O1i—Ni1—N287.10 (5)C8—C9—C10115.86 (14)
N1—Ni1—N281.04 (6)C8—C9—H9A108.3
N1i—Ni1—N298.96 (6)C10—C9—H9A108.3
N2i—Ni1—N2180.00 (5)C8—C9—H9B108.3
C1—O1—Ni1129.01 (10)C10—C9—H9B108.3
C2—O2—C13117.24 (15)H9A—C9—H9B107.4
C7—N1—C8116.00 (13)N2—C10—C9116.40 (13)
C7—N1—Ni1126.39 (11)N2—C10—H10A108.2
C8—N1—Ni1116.42 (10)C9—C10—H10A108.2
C12—N2—C11107.24 (14)N2—C10—H10B108.2
C12—N2—C10110.49 (14)C9—C10—H10B108.2
C11—N2—C10107.71 (13)H10A—C10—H10B107.3
C12—N2—Ni1110.96 (10)N2—C11—H11A109.5
C11—N2—Ni1108.89 (10)N2—C11—H11B109.5
C10—N2—Ni1111.39 (10)H11A—C11—H11B109.5
O1—C1—C6124.80 (13)N2—C11—H11C109.5
O1—C1—C2118.76 (14)H11A—C11—H11C109.5
C6—C1—C2116.44 (14)H11B—C11—H11C109.5
O2—C2—C3124.23 (16)N2—C12—H12A109.5
O2—C2—C1114.18 (14)N2—C12—H12B109.5
C3—C2—C1121.60 (16)H12A—C12—H12B109.5
C2—C3—C4120.66 (17)N2—C12—H12C109.5
C2—C3—H3A119.7H12A—C12—H12C109.5
C4—C3—H3A119.7H12B—C12—H12C109.5
C5—C4—C3119.69 (16)O2—C13—H13A109.5
C5—C4—H4A120.2O2—C13—H13B109.5
C3—C4—H4A120.2H13A—C13—H13B109.5
C4—C5—C6121.33 (17)O2—C13—H13C109.5
C4—C5—H5A119.3H13A—C13—H13C109.5
C6—C5—H5A119.3H13B—C13—H13C109.5
C5—C6—C1120.12 (15)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2571).

References

  • Bruker (2004). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr.31, 57–62.
  • Das, G., Shukla, R., Andal, S., Singh, R. & Bharadwaj, P. K. (1997). Inorg. Chem.36, 323–329.
  • Davies, J. E., Gatehouse, B. M. & Murray, K. S. (1973). J. Chem. Soc. Dalton Trans. pp. 2523–2527.
  • Feng, Y. L. (2003). Chin. J. Struct. Chem.22, 544–546.
  • Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749–m750.
  • Pariya, C., Ghosh, S., Chosh, A., Mukherjee, M., Mukherjee, A. K. & Chaudhuri, N. R. (1995). J. Chem. Soc. Dalton Trans. pp. 337–342.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography