PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1005.
Published online 2008 July 9. doi:  10.1107/S1600536808020291
PMCID: PMC2961928

2,2′-Biimidazolium hexa­aqua­manganese(II) bis­(sulfate)

Abstract

The title compound, (C6H8N4)[Mn(H2O)6](SO4)2, was obtained by cocrystallization of 2,2′-biimidazolium sulfate and bis­(tetra­butyl­ammonium) tetra­chlorido­manganate(II). The asymmetric unit contains one isolated (SO4)2− anion, one half of an octa­hedral [Mn(H2O)6]2+ dication and one half of a 2,2′-biimidazolium dication, each of which lies on an inversion centre. Mol­ecules are connected by a three-dimensional N—H(...)O and O—H(...)O hydrogen-bond network.

Related literature

For the syntheses, structural studies and thermal behaviour of related compounds, see: Rekik et al. (2006 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1005-scheme1.jpg

Experimental

Crystal data

  • (C6H8N4)[Mn(H2O)6](SO4)2
  • M r = 491.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1005-efi1.jpg
  • a = 6.0625 (7) Å
  • b = 11.606 (2) Å
  • c = 12.218 (2) Å
  • β = 91.65 (1)°
  • V = 859.3 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 100 (2) K
  • 0.4 × 0.3 × 0.2 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick,1996 [triangle]) T min = 0.686, T max = 0.800
  • 9389 measured reflections
  • 1954 independent reflections
  • 1897 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.066
  • S = 1.06
  • 1954 reflections
  • 142 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020291/hy2142sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020291/hy2142Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MAK thanks Bayero University, Kano, Nigeria, for funding.

supplementary crystallographic information

Comment

The syntheses, structural studies and thermal behaviour of similar complexes with piperazinium, (C4H12N2)2+, and 1,4-diaza-bicyclo[2.2.2]octandiium, (C6H14N2)2+, cations have been reported (Rekik et al., 2006, 2007).

In the crystal structure of the title compound (Fig. 1; Table 1), the (C6H8N4)2+, [Mn(H2O)6]2+ and (SO4)2- ions are connected by N—H···O and O—H···O hydrogen bonds (Table 2), with the 2,2'-biimidazolium dications in the supramolecular cavities formed by the metal–sulfate framework (Fig. 2). The corresponding structures of some first row transition metal MII sulfates (M = Mn, Ni, Fe and Cu) templated with piperazinium display similar three-dimensional hydrogen-bonded networks (Rekik, Naili, Bataille et al., 2006). In particular, the structures of the (C4H12N2)2+[M(H2O)6]2+(SO4)22- (M = Mn or Ni) compounds contain channels (running parallel to the c-axis in those cases), which are defined by a square arrangement of [M(H2O)6]2+ cations and which contain the organic dications, mirroring the channels seen in the title compound (Fig. 2).

Experimental

The title compound was obtained unintentionally as the product of an attempted synthesis of a hydrogen-bonded salt of the tetrachloromanganate(II) anion and the biimidazolium cation, using slow evaporation of a water–acetonitrile solution (1:1 v/v) of equimolar amounts of bis(tetrabutylammonium) tetrachloromanganate(II) and 2,2'-biimidazolium sulfate at room temperature.

Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) Å and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, 2-y, -z; (vi) 1-x, 1-y, -z.]
Fig. 2.
Packing diagram for the title compound viewed along the a-axis.

Crystal data

(C6H8N4)[Mn(H2O)6](SO4)2F000 = 506
Mr = 491.34Dx = 1.899 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7442 reflections
a = 6.0625 (7) Åθ = 2.4–27.5º
b = 11.606 (2) ŵ = 1.09 mm1
c = 12.218 (2) ÅT = 100 (2) K
β = 91.65 (1)ºBlock, colourless
V = 859.3 (2) Å30.4 × 0.3 × 0.2 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer1954 independent reflections
Radiation source: fine-focus sealed tube1897 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.018
T = 100(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick,1996)h = −7→7
Tmin = 0.686, Tmax = 0.800k = −15→15
9389 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066  w = 1/[σ2(Fo2) + (0.042P)2 + 0.4497P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1954 reflectionsΔρmax = 0.29 e Å3
142 parametersΔρmin = −0.65 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.50000.50000.00000.00892 (9)
S10.87954 (5)0.76694 (3)0.24181 (2)0.00829 (10)
N10.20621 (19)1.00486 (9)0.11407 (9)0.0107 (2)
H1A0.16291.05840.15970.013*
N20.21706 (17)0.89187 (9)−0.02676 (9)0.0105 (2)
H2A0.18250.8585−0.08960.013*
C10.3926 (2)0.93818 (11)0.12742 (11)0.0125 (2)
H1B0.49690.94130.18690.015*
C20.3988 (2)0.86702 (11)0.03924 (11)0.0124 (2)
H2B0.50820.81060.02570.015*
C30.1021 (2)0.97533 (11)0.02099 (10)0.0098 (2)
O10.87996 (15)0.78300 (8)0.12285 (7)0.0128 (2)
O20.65505 (15)0.73605 (8)0.27723 (8)0.0126 (2)
O31.02939 (15)0.66897 (8)0.27336 (7)0.01179 (19)
O40.95582 (15)0.87250 (8)0.29863 (8)0.01210 (19)
O50.39485 (16)0.59047 (8)0.15004 (8)0.0137 (2)
O60.19308 (16)0.40995 (8)−0.00527 (8)0.0135 (2)
O70.63321 (15)0.36233 (8)0.10452 (8)0.01286 (19)
H5A0.474 (3)0.6368 (14)0.1868 (14)0.015*
H6A0.134 (3)0.4002 (15)0.0553 (13)0.015*
H7A0.753 (3)0.3688 (15)0.1418 (14)0.015*
H5B0.273 (2)0.6050 (15)0.1724 (14)0.015*
H6B0.162 (3)0.3514 (14)−0.0441 (14)0.015*
H7B0.548 (3)0.3290 (15)0.1482 (13)0.015*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.00931 (15)0.00906 (15)0.00839 (15)−0.00039 (9)0.00042 (10)0.00021 (9)
S10.00802 (16)0.00845 (16)0.00839 (17)0.00010 (10)0.00033 (11)−0.00019 (10)
N10.0120 (5)0.0100 (5)0.0103 (5)0.0002 (4)0.0001 (4)−0.0003 (4)
N20.0109 (5)0.0105 (5)0.0102 (5)−0.0002 (4)0.0007 (4)−0.0012 (4)
C10.0128 (6)0.0120 (6)0.0127 (6)0.0003 (4)−0.0010 (4)0.0025 (5)
C20.0112 (6)0.0119 (6)0.0141 (6)0.0008 (4)−0.0006 (4)0.0019 (5)
C30.0103 (6)0.0089 (5)0.0104 (6)−0.0016 (5)0.0015 (4)0.0009 (4)
O10.0167 (5)0.0125 (4)0.0090 (4)−0.0011 (3)−0.0005 (3)0.0010 (3)
O20.0088 (4)0.0139 (4)0.0150 (5)−0.0014 (3)0.0021 (3)−0.0016 (3)
O30.0116 (4)0.0115 (4)0.0123 (4)0.0028 (3)0.0006 (3)0.0016 (3)
O40.0124 (4)0.0110 (4)0.0129 (4)−0.0018 (3)0.0009 (3)−0.0027 (3)
O50.0106 (4)0.0166 (5)0.0141 (5)−0.0010 (4)0.0026 (3)−0.0052 (4)
O60.0139 (4)0.0152 (5)0.0116 (5)−0.0036 (4)0.0027 (3)−0.0025 (4)
O70.0106 (4)0.0145 (5)0.0134 (5)−0.0004 (3)0.0002 (3)0.0035 (3)

Geometric parameters (Å, °)

Mn1—O62.1335 (10)N2—C31.3371 (16)
Mn1—O6i2.1335 (10)N2—C21.3771 (17)
Mn1—O7i2.1856 (10)N2—H2A0.8800
Mn1—O72.1856 (10)C1—C21.3589 (19)
Mn1—O52.2218 (10)C1—H1B0.9500
Mn1—O5i2.2218 (10)C2—H2B0.9500
S1—O11.4653 (10)C3—C3ii1.445 (2)
S1—O41.4759 (10)O5—H5A0.843 (14)
S1—O21.4839 (10)O5—H5B0.813 (14)
S1—O21.4839 (10)O6—H6A0.839 (14)
S1—O31.4989 (9)O6—H6B0.846 (14)
N1—C31.3296 (17)O7—H7A0.851 (14)
N1—C11.3754 (17)O7—H7B0.846 (14)
N1—H1A0.8800
O6—Mn1—O6i180.0C3—N1—C1108.94 (11)
O6—Mn1—O7i91.90 (4)C3—N1—H1A125.5
O6i—Mn1—O7i88.10 (4)C1—N1—H1A125.5
O6—Mn1—O788.10 (4)C3—N2—C2108.33 (11)
O6i—Mn1—O791.90 (4)C3—N2—H2A125.8
O7i—Mn1—O7180.0C2—N2—H2A125.8
O6—Mn1—O589.18 (4)C2—C1—N1106.82 (11)
O6i—Mn1—O590.82 (4)C2—C1—H1B126.6
O7i—Mn1—O591.53 (4)N1—C1—H1B126.6
O7—Mn1—O588.47 (4)C1—C2—N2107.28 (11)
O6—Mn1—O5i90.82 (4)C1—C2—H2B126.4
O6i—Mn1—O5i89.18 (4)N2—C2—H2B126.4
O7i—Mn1—O5i88.47 (4)N1—C3—N2108.63 (11)
O7—Mn1—O5i91.53 (4)N1—C3—C3ii125.62 (15)
O5—Mn1—O5i180.0N2—C3—C3ii125.75 (15)
O1—S1—O4110.58 (6)Mn1—O5—H5A124.6 (12)
O1—S1—O2110.35 (6)Mn1—O5—H5B131.4 (13)
O4—S1—O2109.94 (6)H5A—O5—H5B101.5 (17)
O1—S1—O2110.35 (6)Mn1—O6—H6A115.7 (12)
O4—S1—O2109.94 (6)Mn1—O6—H6B126.2 (12)
O1—S1—O3109.47 (6)H6A—O6—H6B107.0 (17)
O4—S1—O3109.23 (6)Mn1—O7—H7A123.0 (12)
O2—S1—O3107.21 (6)Mn1—O7—H7B118.8 (12)
O2—S1—O3107.21 (6)H7A—O7—H7B103.3 (17)
C3—N1—C1—C20.07 (15)C1—N1—C3—C3ii179.08 (15)
N1—C1—C2—N20.36 (14)C2—N2—C3—N10.71 (14)
C3—N2—C2—C1−0.66 (14)C2—N2—C3—C3ii−178.85 (15)
C1—N1—C3—N2−0.48 (14)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O3iii0.881.932.7699 (15)159
N1—H1A···O2iii0.882.453.0994 (15)131
N2—H2A···O3iv0.881.922.7562 (16)159
O5—H5A···O20.843 (14)1.917 (15)2.7600 (15)176.8 (18)
O5—H5B···O3v0.813 (14)2.088 (15)2.8638 (15)159.7 (17)
O6—H6A···O4vi0.839 (14)1.908 (15)2.7402 (15)171.2 (18)
O6—H6B···O1i0.846 (14)1.847 (15)2.6904 (14)174.2 (18)
O7—H7A···O4vii0.851 (14)1.888 (15)2.7298 (15)169.5 (18)
O7—H7B···O2vi0.846 (14)1.892 (14)2.7266 (14)169.0 (17)

Symmetry codes: (iii) −x+1, y+1/2, −z+1/2; (iv) x−1, −y+3/2, z−1/2; (v) x−1, y, z; (vi) −x+1, y−1/2, −z+1/2; (i) −x+1, −y+1, −z; (vii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2142).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rekik, W., Naili, H., Bataille, T., Roisnel, T. & Mhiri, T. (2006). Inorg. Chim. Acta, 359, 3954–3962.
  • Rekik, W., Naili, H., Mhiri, T. & Bataille, T. (2007). J. Chem. Crystallogr.37, 149–155.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography