PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m1000.
Published online 2008 July 5. doi:  10.1107/S1600536808020138
PMCID: PMC2961925

Tris(tert-butyl isocyanide-κC)carbonylnickel(0)

Abstract

The title compound, [Ni(C5H9N)3(CO)], was prepared from Ni(CO)4 and a tenfold excess of tert-butyl isocyanide. It crystallizes with two symmetry-independent mol­ecules per asymmetric unit. The central Ni atom of each independent mol­ecule has a nearly perfect tetra­hedral coordination environment, comprising one carbon monoxide and three isocyanide ligands. The title compound is the first structurally characterized Ni0 compound with a mixed CO/RNC coordination.

Related literature

For related literature, see: Braga et al. (1993 [triangle]); Farrugia & Evans (2005 [triangle]); Hahn et al. (2004 [triangle]); Ladell et al. (1952 [triangle]); Bigorgne (1963a [triangle],b [triangle]); Dönnecke & Imhof (2003 [triangle]); Desiraju & Steiner (1999 [triangle]); Halbauer et al. (2006 [triangle], 2007 [triangle]); Imhof & Halbauer (2006 [triangle]); Imhof, Halbauer, Dönnecke & Görls (2006 [triangle]); Ostuka et al. (1969 [triangle], 1971 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1000-scheme1.jpg

Experimental

Crystal data

  • [Ni(C5H9N)3(CO)]
  • M r = 336.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1000-efi1.jpg
  • a = 17.1621 (7) Å
  • b = 14.5687 (5) Å
  • c = 17.1627 (7) Å
  • β = 113.179 (3)°
  • V = 3944.8 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 183 (2) K
  • 0.06 × 0.05 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 26227 measured reflections
  • 9006 independent reflections
  • 5006 reflections with I > 2σ(I)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.136
  • S = 1.01
  • 9006 reflections
  • 397 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1990 [triangle]); software used to prepare material for publication: SHELXL97 and XP.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020138/fj2122sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020138/fj2122Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft. KH thanks the Free State of Thuringia for a PhD grant.

supplementary crystallographic information

Comment

Some of us recently published the synthesis of cyano complexes from the reaction of metal carbonyls with an excess of tert-butylisocyanide or iso-octylisocyanide, respectively (M = Ru: Dönnecke & Imhof (2003), Imhof & Halbauer (2006); M = Fe: Halbauer et al. (2006); M = Mn: Halbauer et al. (2007)). Mononuclear metal carbonyls like Fe(CO)5 or Mo(CO)6 under the same conditions do not react to give M(II) cyano complexes but yield substitution products of the corresponding carbonyl precursors (M = Fe: Halbauer et al. (2006); M = Mo: Imhof et al. (2006)). Due to the enhanced reactivity of Ni(CO)4 we nevertheless attempted the synthesis of complexes of the type [Ni(CN)2(tBuNC)4] from the reaction of Ni(CO)4 with an excess of the corresponding isocyanide leading to the formation of the title compound.

The molecular structure of one of the symmetry independent molecules of the title compound is depicted in Fig. 1. As it is expected the central nickel atom is almost perfectly tetrahedrally coordinated by three isocyanide and one carbon monoxide ligand. The metal carbon bond lengths of the isocyanide carbons atom are about 11 pm in average longer compared to the Ni—CO bond reflecting the higher π-acceptor properties of the latter. Both CO and isocyanide ligands are nearly not bent out of linearity. The bond lengths of the two molecules in the asymmetric unit are identical within experimental errors. In contrast to this observation the bond angles show slight deviations which may be caused by the bulkiness of the tert-butyl groups connected with packing effects. As it is expected the shortest intermolecular distances are of the C—H···O type. But whereas O1B is engaged in the three shortest interactions observed (C6A—H6AC···O1B 2.721 (8) Å; C11A—H11B···O1B 2.817 (8) Å; C16A—H16A···O1B 2.876 (8)), O1A shows only one contact below 3 Å (C16B—H16E···O1A 2.949 (9) Å). All of these contacts are well in the range discussed by Desiraju & Steiner as C—H···O hydrogen bonds (Desiraju & Steiner (1999).

With tBuNC as the ligand only [Ni(CO)2(tBuNC)2] (Ostuka et al. (1971)) and [Ni(tBuNC)4] (Ostuka et al. (1969)) were reported but not structurally characterized. The same is true for the compounds [Ni(CO)4-n(RNC)n] (R = Me, Et, nBu, Ph; n = 1, 2, 3, 4; Bigorgne (1963a,b)). The only complexes to be structurally characterized were the homoleptic [Ni(RNC)4] (R = Ph, 2,6-Me—Ph, 2-NO2—Ph; Hahn et al. (2004)) and Ni(CO)4 itself (Farrugia & Evans (2005); Braga et al. (1993); Ladell et al. (1952)). So the title compound is the first [Ni(CO)4-n(RNC)n] compound to be structurally characterized.

Experimental

0.3 ml of a 2 M solution of Ni(CO)4 (0.059 mmol) in toluene and 0.7 ml tert. butylisocyanide (5.86 mmol) together with another 3 ml of anhydrous toluene are transferred into a stainless steel autoclave and are heated to 130°C for 18 h. After cooling down the autoclave the resulting solution is transferrd to a Schlenk tube, all volatile material is evaporated and the resulting red oily residue is dissolved in anhydrous light petroleum (b.p. 40–60°C). After three days at -20°C the title compound crystallizes as colorless crystals. Yield: 12 mg (59%). IR (KBr pellets) [cm-1]: 2984m, 2936m, 2873w, 2140m, 2090 s, 2057 s, 2001m, 1920vs, 1914vs, 1453m, 1393m, 1369m, 1229m, 1208m. MS (DEI) [m/z(%)]: 336 (1) [MH+], 307 (13) [M+ - CO], 252 (65) [M+ - tBuNC], 224 (51) [Ni(tBuNC)2]+, 195 (10) [Ni(CO)(tBuNC)H]+, 168 (100) [Ni(tBuNC)(CN)H]+, 141 (16) [Ni(tBuNC)]+, 112 (99) [Ni(CO)(CN)]+. 1H-NMR (400 MHz, CDCl3, 298 K) [p.p.m.]: 1.41(s). 13C-NMR (400 MHz, CDCl3, 298 K) [p.p.m.]: 30.54 (CH3), 55.83 (C), 151.89 (NC), 197.87 (CO).

Refinement

Hydrogen atoms were calculated in idealized positions and refined with distances of 0.96 Å. All hydrogen atoms were refined using a riding model with Uiso(H) = 1.5 times Uiso(C).

Figures

Fig. 1.
Molecular structure of one of the symmetry independent molecules of the title compound showing the labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

[Ni(C5H9N)3(CO)]F000 = 1440
Mr = 336.11Dx = 1.132 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 26227 reflections
a = 17.1621 (7) Åθ = 2.6–27.5º
b = 14.5687 (5) ŵ = 0.99 mm1
c = 17.1627 (7) ÅT = 183 (2) K
β = 113.179 (3)ºPrism, colourless
V = 3944.8 (3) Å30.06 × 0.05 × 0.05 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer5006 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Monochromator: graphiteθmax = 27.5º
T = 183(2) Kθmin = 2.6º
[var phi] and ω scansh = −18→22
Absorption correction: nonek = −17→18
26227 measured reflectionsl = −19→22
9006 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.136  w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2606P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
9006 reflectionsΔρmax = 0.59 e Å3
397 parametersΔρmin = −0.58 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni1A0.05645 (3)0.23726 (3)0.89365 (3)0.03256 (13)
O1A0.1424 (2)0.3476 (2)1.0444 (2)0.0930 (11)
N1A0.15666 (18)0.27062 (19)0.78571 (19)0.0442 (7)
N2A−0.13150 (19)0.27889 (19)0.8137 (2)0.0474 (8)
N3A0.06472 (17)0.03062 (18)0.91591 (19)0.0406 (7)
C1A0.1073 (3)0.3018 (3)0.9861 (3)0.0495 (10)
C2A0.1142 (2)0.2584 (2)0.8233 (2)0.0368 (8)
C3A0.2158 (2)0.2906 (3)0.7461 (2)0.0495 (10)
C4A0.2853 (2)0.3508 (3)0.8056 (3)0.0604 (11)
H4AA0.31320.31940.86000.091*
H4AB0.26080.40870.81450.091*
H4AC0.32690.36360.78100.091*
C5A0.2521 (3)0.2004 (3)0.7310 (3)0.0850 (16)
H5AA0.27910.16760.78480.128*
H5AB0.29430.21280.70700.128*
H5AC0.20640.16270.69130.128*
C6A0.1655 (3)0.3404 (4)0.6631 (3)0.0858 (16)
H6AA0.13870.39500.67490.129*
H6AB0.12180.29930.62520.129*
H6AC0.20380.35870.63600.129*
C7A−0.0591 (2)0.2639 (2)0.8422 (2)0.0389 (8)
C8A−0.2222 (2)0.2960 (3)0.7798 (3)0.0517 (10)
C9A−0.2462 (3)0.3409 (4)0.6944 (3)0.0969 (18)
H9AA−0.22010.40180.70160.145*
H9AB−0.30800.34700.66720.145*
H9AC−0.22620.30300.65880.145*
C10A−0.2666 (3)0.2032 (3)0.7710 (3)0.0737 (13)
H10A−0.25090.16350.73330.111*
H10B−0.32810.21240.74700.111*
H10C−0.24910.17430.82680.111*
C11A−0.2407 (3)0.3558 (3)0.8424 (3)0.0732 (13)
H11A−0.21070.41440.84870.110*
H11B−0.22150.32470.89740.110*
H11C−0.30180.36720.82170.110*
C12A0.0622 (2)0.1099 (2)0.9093 (2)0.0377 (8)
C13A0.0707 (2)−0.0698 (2)0.9185 (2)0.0369 (8)
C14A−0.0192 (2)−0.1076 (2)0.8829 (3)0.0506 (10)
H14A−0.0489−0.08630.82450.076*
H14B−0.0492−0.08610.91760.076*
H14C−0.0173−0.17490.88380.076*
C15A0.1184 (2)−0.0983 (2)0.8643 (2)0.0495 (10)
H15A0.0867−0.07860.80570.074*
H15B0.1248−0.16520.86610.074*
H15C0.1746−0.06950.88620.074*
C16A0.1176 (2)−0.0972 (2)1.0110 (2)0.0458 (9)
H16A0.1735−0.06791.03370.069*
H16B0.1245−0.16411.01500.069*
H16C0.0850−0.07741.04370.069*
Ni1B−0.03653 (3)0.74217 (3)0.61221 (3)0.03316 (13)
O1B−0.21523 (19)0.7099 (2)0.5102 (2)0.0873 (11)
N1B0.06832 (18)0.66226 (18)0.52198 (19)0.0408 (7)
N2B−0.03902 (19)0.9488 (2)0.62247 (19)0.0462 (8)
N3B0.0221 (2)0.64140 (19)0.7800 (2)0.0467 (8)
C1B−0.1440 (3)0.7201 (3)0.5515 (3)0.0493 (10)
C2B0.0296 (2)0.6961 (2)0.5572 (2)0.0355 (8)
C3B0.1153 (2)0.6134 (2)0.4808 (3)0.0440 (9)
C4B0.1229 (6)0.5173 (4)0.5100 (7)0.245 (6)
H4BA0.06620.49120.49510.368*
H4BB0.15400.51520.57160.368*
H4BC0.15350.48160.48260.368*
C5B0.0701 (4)0.6220 (6)0.3882 (4)0.175 (4)
H5BA0.01660.58800.36970.262*
H5BB0.10530.59700.36010.262*
H5BC0.05820.68690.37310.262*
C6B0.2014 (3)0.6551 (4)0.5071 (4)0.101 (2)
H6BA0.19600.71880.48740.152*
H6BB0.23460.62010.48220.152*
H6BC0.23000.65370.56900.152*
C7B−0.0316 (2)0.8695 (2)0.6218 (2)0.0361 (8)
C8B−0.0605 (3)1.0458 (2)0.6121 (3)0.0574 (11)
C9B0.0215 (5)1.0972 (4)0.6294 (5)0.160 (4)
H9BA0.06171.08440.68740.241*
H9BB0.01001.16330.62290.241*
H9BC0.04571.07720.58920.241*
C10B−0.1210 (6)1.0587 (4)0.5234 (3)0.190 (5)
H10D−0.17381.02600.51430.286*
H10E−0.09641.03450.48490.286*
H10F−0.13301.12430.51230.286*
C11B−0.0955 (3)1.0733 (3)0.6757 (3)0.0795 (15)
H11D−0.14451.03470.66890.119*
H11E−0.11311.13780.66690.119*
H11F−0.05181.06550.73290.119*
C12B0.0011 (2)0.6833 (2)0.7177 (3)0.0423 (9)
C13B0.0452 (2)0.5740 (2)0.8480 (2)0.0468 (10)
C14B0.1115 (3)0.5123 (3)0.8381 (4)0.0912 (18)
H14D0.08820.48310.78210.137*
H14E0.12810.46500.88220.137*
H14F0.16130.54900.84350.137*
C15B0.0784 (4)0.6238 (3)0.9314 (3)0.0905 (18)
H15D0.12950.65810.93730.136*
H15E0.09210.57930.97780.136*
H15F0.03510.66650.93350.136*
C16B−0.0329 (3)0.5185 (3)0.8384 (3)0.0729 (13)
H16D−0.05240.48440.78490.109*
H16E−0.07790.56000.83830.109*
H16F−0.01890.47530.88580.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni1A0.0291 (2)0.0315 (2)0.0424 (3)0.00252 (17)0.0198 (2)0.00508 (19)
O1A0.107 (3)0.100 (3)0.059 (2)−0.005 (2)0.017 (2)−0.029 (2)
N1A0.0384 (17)0.0591 (18)0.0423 (19)0.0001 (14)0.0235 (16)0.0023 (14)
N2A0.0310 (18)0.0544 (19)0.059 (2)0.0067 (14)0.0195 (16)0.0065 (15)
N3A0.0365 (17)0.0355 (17)0.055 (2)0.0067 (12)0.0233 (15)0.0101 (13)
C1A0.054 (3)0.052 (2)0.049 (3)0.0049 (18)0.027 (2)0.001 (2)
C2A0.0321 (18)0.0364 (18)0.042 (2)0.0037 (14)0.0146 (16)0.0029 (15)
C3A0.037 (2)0.084 (3)0.036 (2)0.0044 (19)0.0229 (19)0.004 (2)
C4A0.044 (3)0.087 (3)0.056 (3)−0.008 (2)0.025 (2)0.004 (2)
C5A0.073 (3)0.107 (4)0.101 (4)0.001 (3)0.062 (3)−0.023 (3)
C6A0.046 (3)0.167 (5)0.049 (3)0.006 (3)0.024 (2)0.028 (3)
C7A0.038 (2)0.0364 (18)0.048 (2)0.0006 (15)0.0237 (19)0.0067 (16)
C8A0.029 (2)0.080 (3)0.047 (3)0.0111 (18)0.0161 (19)0.016 (2)
C9A0.054 (3)0.165 (5)0.074 (4)0.024 (3)0.027 (3)0.052 (4)
C10A0.046 (3)0.108 (4)0.062 (3)−0.013 (2)0.016 (2)0.001 (3)
C11A0.055 (3)0.090 (3)0.087 (4)0.013 (2)0.041 (3)−0.005 (3)
C12A0.0289 (19)0.040 (2)0.050 (3)0.0031 (14)0.0220 (18)0.0062 (16)
C13A0.038 (2)0.0294 (17)0.048 (2)0.0064 (14)0.0219 (18)0.0076 (15)
C14A0.041 (2)0.043 (2)0.068 (3)−0.0038 (16)0.023 (2)−0.0006 (18)
C15A0.046 (2)0.059 (2)0.048 (3)0.0130 (18)0.023 (2)0.0020 (18)
C16A0.053 (2)0.042 (2)0.046 (3)0.0088 (16)0.024 (2)0.0057 (17)
Ni1B0.0321 (2)0.0330 (2)0.0378 (3)−0.00067 (17)0.0174 (2)−0.00341 (19)
O1B0.0411 (19)0.140 (3)0.085 (3)−0.0278 (18)0.0283 (18)−0.053 (2)
N1B0.0389 (17)0.0412 (16)0.049 (2)0.0042 (13)0.0247 (16)−0.0002 (14)
N2B0.052 (2)0.0366 (17)0.044 (2)0.0012 (13)0.0119 (16)−0.0018 (13)
N3B0.059 (2)0.0396 (17)0.047 (2)0.0062 (14)0.0271 (18)0.0058 (15)
C1B0.043 (2)0.060 (2)0.053 (3)−0.0105 (18)0.027 (2)−0.0198 (19)
C2B0.0324 (19)0.0351 (18)0.038 (2)−0.0013 (14)0.0129 (17)0.0000 (15)
C3B0.041 (2)0.043 (2)0.058 (3)0.0052 (15)0.030 (2)−0.0093 (18)
C4B0.374 (13)0.045 (3)0.525 (18)0.053 (5)0.401 (14)0.044 (6)
C5B0.056 (4)0.388 (13)0.071 (5)0.054 (5)0.014 (3)−0.090 (6)
C6B0.045 (3)0.172 (5)0.094 (4)−0.019 (3)0.037 (3)−0.065 (4)
C7B0.034 (2)0.043 (2)0.032 (2)0.0000 (15)0.0128 (17)−0.0001 (15)
C8B0.096 (3)0.0279 (19)0.053 (3)0.0079 (19)0.034 (3)0.0045 (17)
C9B0.202 (8)0.051 (3)0.311 (12)−0.035 (4)0.189 (8)−0.033 (5)
C10B0.348 (12)0.101 (4)0.046 (4)0.130 (6)−0.005 (5)0.005 (3)
C11B0.123 (4)0.054 (3)0.077 (4)0.022 (3)0.056 (3)0.008 (2)
C12B0.049 (2)0.0350 (19)0.052 (3)−0.0004 (15)0.029 (2)−0.0063 (18)
C13B0.066 (3)0.0312 (19)0.048 (3)0.0040 (17)0.028 (2)0.0081 (17)
C14B0.104 (4)0.064 (3)0.132 (5)0.031 (3)0.074 (4)0.039 (3)
C15B0.147 (5)0.059 (3)0.044 (3)−0.022 (3)0.015 (3)0.004 (2)
C16B0.090 (4)0.056 (3)0.076 (4)−0.013 (2)0.037 (3)0.007 (2)

Geometric parameters (Å, °)

Ni1A—C1A1.753 (4)Ni1B—C1B1.755 (4)
Ni1A—C2A1.864 (3)Ni1B—C7B1.861 (3)
Ni1A—C7A1.867 (4)Ni1B—C2B1.864 (3)
Ni1A—C12A1.872 (3)Ni1B—C12B1.874 (4)
O1A—C1A1.155 (5)O1B—C1B1.156 (4)
N1A—C2A1.162 (4)N1B—C2B1.169 (4)
N1A—C3A1.457 (4)N1B—C3B1.451 (4)
N2A—C7A1.162 (4)N2B—C7B1.163 (4)
N2A—C8A1.453 (4)N2B—C8B1.454 (4)
N3A—C12A1.159 (4)N3B—C12B1.158 (4)
N3A—C13A1.466 (4)N3B—C13B1.457 (5)
C3A—C4A1.509 (5)C3B—C5B1.475 (7)
C3A—C5A1.519 (6)C3B—C4B1.475 (6)
C3A—C6A1.526 (5)C3B—C6B1.493 (5)
C4A—H4AA0.9800C4B—H4BA0.9800
C4A—H4AB0.9800C4B—H4BB0.9800
C4A—H4AC0.9800C4B—H4BC0.9800
C5A—H5AA0.9800C5B—H5BA0.9800
C5A—H5AB0.9800C5B—H5BB0.9800
C5A—H5AC0.9800C5B—H5BC0.9800
C6A—H6AA0.9800C6B—H6BA0.9800
C6A—H6AB0.9800C6B—H6BB0.9800
C6A—H6AC0.9800C6B—H6BC0.9800
C8A—C9A1.507 (6)C8B—C10B1.479 (7)
C8A—C11A1.511 (5)C8B—C11B1.492 (5)
C8A—C10A1.529 (6)C8B—C9B1.515 (7)
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
C10A—H10A0.9800C10B—H10D0.9800
C10A—H10B0.9800C10B—H10E0.9800
C10A—H10C0.9800C10B—H10F0.9800
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C13A—C15A1.519 (4)C13B—C15B1.503 (6)
C13A—C16A1.523 (5)C13B—C16B1.517 (5)
C13A—C14A1.522 (5)C13B—C14B1.512 (5)
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
C15A—H15A0.9800C15B—H15D0.9800
C15A—H15B0.9800C15B—H15E0.9800
C15A—H15C0.9800C15B—H15F0.9800
C16A—H16A0.9800C16B—H16D0.9800
C16A—H16B0.9800C16B—H16E0.9800
C16A—H16C0.9800C16B—H16F0.9800
C1A—Ni1A—C2A107.16 (16)C1B—Ni1B—C7B103.66 (16)
C1A—Ni1A—C7A111.99 (16)C1B—Ni1B—C2B109.91 (15)
C2A—Ni1A—C7A113.31 (15)C7B—Ni1B—C2B112.86 (14)
C1A—Ni1A—C12A114.96 (17)C1B—Ni1B—C12B111.80 (17)
C2A—Ni1A—C12A104.26 (13)C7B—Ni1B—C12B112.61 (14)
C7A—Ni1A—C12A105.07 (14)C2B—Ni1B—C12B106.11 (14)
C2A—N1A—C3A174.3 (4)C2B—N1B—C3B175.5 (3)
C7A—N2A—C8A178.4 (4)C7B—N2B—C8B171.2 (4)
C12A—N3A—C13A175.1 (3)C12B—N3B—C13B169.3 (4)
O1A—C1A—Ni1A176.1 (4)O1B—C1B—Ni1B176.7 (4)
N1A—C2A—Ni1A174.0 (3)N1B—C2B—Ni1B175.9 (3)
N1A—C3A—C4A108.1 (3)N1B—C3B—C5B109.0 (3)
N1A—C3A—C5A108.4 (3)N1B—C3B—C4B107.0 (3)
C4A—C3A—C5A110.5 (3)C5B—C3B—C4B112.7 (6)
N1A—C3A—C6A106.7 (3)N1B—C3B—C6B109.0 (3)
C4A—C3A—C6A111.2 (4)C5B—C3B—C6B109.3 (4)
C5A—C3A—C6A111.8 (4)C4B—C3B—C6B109.8 (5)
C3A—C4A—H4AA109.5C3B—C4B—H4BA109.5
C3A—C4A—H4AB109.5C3B—C4B—H4BB109.5
H4AA—C4A—H4AB109.5H4BA—C4B—H4BB109.5
C3A—C4A—H4AC109.5C3B—C4B—H4BC109.5
H4AA—C4A—H4AC109.5H4BA—C4B—H4BC109.5
H4AB—C4A—H4AC109.5H4BB—C4B—H4BC109.5
C3A—C5A—H5AA109.5C3B—C5B—H5BA109.5
C3A—C5A—H5AB109.5C3B—C5B—H5BB109.5
H5AA—C5A—H5AB109.5H5BA—C5B—H5BB109.5
C3A—C5A—H5AC109.5C3B—C5B—H5BC109.5
H5AA—C5A—H5AC109.5H5BA—C5B—H5BC109.5
H5AB—C5A—H5AC109.5H5BB—C5B—H5BC109.5
C3A—C6A—H6AA109.5C3B—C6B—H6BA109.5
C3A—C6A—H6AB109.5C3B—C6B—H6BB109.5
H6AA—C6A—H6AB109.5H6BA—C6B—H6BB109.5
C3A—C6A—H6AC109.5C3B—C6B—H6BC109.5
H6AA—C6A—H6AC109.5H6BA—C6B—H6BC109.5
H6AB—C6A—H6AC109.5H6BB—C6B—H6BC109.5
N2A—C7A—Ni1A176.7 (3)N2B—C7B—Ni1B171.8 (3)
N2A—C8A—C9A107.6 (3)N2B—C8B—C10B106.9 (3)
N2A—C8A—C11A107.8 (3)N2B—C8B—C11B109.1 (3)
C9A—C8A—C11A112.8 (4)C10B—C8B—C11B113.3 (5)
N2A—C8A—C10A107.5 (3)N2B—C8B—C9B106.6 (4)
C9A—C8A—C10A110.6 (4)C10B—C8B—C9B111.2 (5)
C11A—C8A—C10A110.2 (3)C11B—C8B—C9B109.5 (4)
C8A—C9A—H9AA109.5C8B—C9B—H9BA109.5
C8A—C9A—H9AB109.5C8B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C8A—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C8A—C10A—H10A109.5C8B—C10B—H10D109.5
C8A—C10A—H10B109.5C8B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C8A—C10A—H10C109.5C8B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C8A—C11A—H11A109.5C8B—C11B—H11D109.5
C8A—C11A—H11B109.5C8B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
C8A—C11A—H11C109.5C8B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
N3A—C12A—Ni1A177.5 (3)N3B—C12B—Ni1B175.4 (3)
N3A—C13A—C15A107.6 (3)N3B—C13B—C15B108.6 (3)
N3A—C13A—C16A107.2 (3)N3B—C13B—C16B108.8 (3)
C15A—C13A—C16A112.0 (3)C15B—C13B—C16B110.4 (4)
N3A—C13A—C14A107.5 (3)N3B—C13B—C14B106.8 (3)
C15A—C13A—C14A111.2 (3)C15B—C13B—C14B112.0 (4)
C16A—C13A—C14A111.1 (3)C16B—C13B—C14B110.1 (3)
C13A—C14A—H14A109.5C13B—C14B—H14D109.5
C13A—C14A—H14B109.5C13B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C13A—C14A—H14C109.5C13B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C13A—C15A—H15A109.5C13B—C15B—H15D109.5
C13A—C15A—H15B109.5C13B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C13A—C15A—H15C109.5C13B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C13A—C16A—H16A109.5C13B—C16B—H16D109.5
C13A—C16A—H16B109.5C13B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C13A—C16A—H16C109.5C13B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2122).

References

  • Bigorgne, M. (1963a). Bull. Soc. Chim. Fr. pp. 295–303.
  • Bigorgne, M. (1963b). J. Organomet. Chem.1, 101–119.
  • Braga, D., Grepioni, F. & Orpen, A. G. (1993). Organometallics, 12, 1481–1483.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, IUCr Monographs on Crystallography No. 9. Oxford Science Publications.
  • Dönnecke, D. & Imhof, W. (2003). Dalton Trans. pp. 2737–2744.
  • Farrugia, L. J. & Evans, C. (2005). J. Phys. Chem. A, 109, 8834–8848. [PubMed]
  • Hahn, F. E., Münder, M. & Fröhlich, P. (2004). Z. Naturforsch. Teil B, 59, 850–854.
  • Halbauer, K., Dönnecke, D., Görls, H. & Imhof, W. (2006). Z. Anorg. Allg. Chem.632, 1477–1482.
  • Halbauer, K., Görls, H., Fidler, T. & Imhof, W. (2007). J. Organomet. Chem.692, 1898–1911.
  • Imhof, W. & Halbauer, K. (2006). Acta Cryst. E62, m1514–m1516.
  • Imhof, W., Halbauer, K., Dönnecke, D. & Görls, H. (2006). Acta Cryst. E62, m462–m464.
  • Ladell, J., Post, B. & Fankuchen, I. (1952). Acta Cryst.5, 795–800.
  • Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Ostuka, S., Nakamura, Y. & Yoshida, T. (1969). J. Am. Chem. Soc.91, 6994–6999.
  • Ostuka, S., Yoshida, T. & Tatsuno, Y. (1971). J. Am. Chem. Soc.93, 6462–6469.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography