PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m998.
Published online 2008 July 5. doi:  10.1107/S1600536808019260
PMCID: PMC2961923

Bis[2-(1H-benzotriazol-1-yl)acetonitrile-κN 3]dibromidocopper(II)

Abstract

In the title complex, [CuBr2(C8H6N4)2], the CuII atom is located on an inversion centre and the asymmetric unit comprises one half-mol­ecule. The Cu atom is coordinated by two Br ions and two N atoms in approximately square-planar geometry. In the crystal structure, inter­molecular C—H(...)Br hydrogen bonds and π–π inter­actions between benzotriazole rings (centroid–centroid distance = 3.651 Å) generate a three-dimensional network.

Related literature

For the synthesis of the organic ligand, see: Danan et al. (1997 [triangle]); Xu & Ye (2007 [triangle]). For the structure of a similar complex, see: Hang & Ye (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m998-scheme1.jpg

Experimental

Crystal data

  • [CuBr2(C8H6N4)2]
  • M r = 539.70
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m998-efi1.jpg
  • a = 7.9034 (16) Å
  • b = 8.1434 (16) Å
  • c = 8.7849 (18) Å
  • α = 116.04 (3)°
  • β = 105.86 (3)°
  • γ = 100.74 (3)°
  • V = 456.9 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 5.59 mm−1
  • T = 293 (2) K
  • 0.20 × 0.12 × 0.12 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.702, T max = 1.000 (expected range = 0.359–0.511)
  • 4726 measured reflections
  • 2095 independent reflections
  • 1809 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.218
  • S = 1.06
  • 2095 reflections
  • 124 parameters
  • H-atom parameters constrained
  • Δρmax = 3.13 e Å−3
  • Δρmin = −1.39 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019260/kp2178sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019260/kp2178Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the Starter Fund of Southeast University for financial support to buy the CCD X-ray diffractometer.

supplementary crystallographic information

Comment

Recently, the crystal structure of 2-(1H-benzo[d][1,2,3] triazol-1-yl)acetonitrile (Xu et al. (2007)) and its Zn complex [Hang et al. (2008)] have been reported successively. Though adopting the same ligand, the structure of the title complex is quite different from the Zn analogue due to the different synthesis route. The precipitate of the title compound is obtained by mixing the ethanol solution of ligand and a water solution of CuBr2. Under this condition, the cyano group in the title compound does not hydrolyse nor coordinate to CuII. CuII is coordinated by two nitrogen atoms from the benzotriazole rings and two terminal bromide anions in an almost square planar geometry (Fig. 1). The intermolecular C—H···Br hydrogen bonding interactions and π···π stacking between benzotriazole rings generate the three-dimensional network (Fig. 2); Cg···Cgi distance is 3.651 Å, (symmetry code: -1-x,-1-y,-z; –x,-1-y,-z).

Experimental

The ligand, 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetonitrile, was synthesized by the reaction of benzotriazole and bromoacetonitrile according to the procedure described in the literature [Danan et al. (1997)].

2-(1H-benzotriazol-1-yl)acetonitrile (0.32 g,2 mmol) was dissolved in 5 mL ethanol, added into a solution of CuBr2(0.22 g,1 mmol) which was dissolved in 5 mL water, the mixture was filtered. Crystals suitable for X-ray analysis were obtained after standing the filtrate for 3 days at the room temperature.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, O atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
The crystal packing along b axis with π···π stacking.

Crystal data

[CuBr2(C8H6N4)2]Z = 1
Mr = 539.70F000 = 263
Triclinic, P1Dx = 1.961 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.9034 (16) ÅCell parameters from 4665 reflections
b = 8.1434 (16) Åθ = 6.2–57.6º
c = 8.7849 (18) ŵ = 5.59 mm1
α = 116.04 (3)ºT = 293 (2) K
β = 105.86 (3)ºBlock, red
γ = 100.74 (3)º0.20 × 0.12 × 0.12 mm
V = 456.9 (3) Å3

Data collection

Rigaku Mercury2 diffractometer2095 independent reflections
Radiation source: fine-focus sealed tube1809 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.1º
CCD_Profile_fitting scansh = −10→10
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −10→10
Tmin = 0.702, Tmax = 1.000l = −11→11
4726 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.218  w = 1/[σ2(Fo2) + (0.1128P)2 + 5.2279P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2095 reflectionsΔρmax = 3.13 e Å3
124 parametersΔρmin = −1.39 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.13948 (13)−0.20325 (12)0.56625 (11)0.0403 (3)
Cu10.00000.00000.50000.0170 (3)
C8−0.2130 (9)−0.4022 (9)0.1349 (8)0.0175 (12)
N4−0.0651 (9)−0.1575 (8)0.1166 (7)0.0240 (12)
N3−0.1103 (9)−0.2050 (8)0.2291 (7)0.0222 (12)
N2−0.3749 (15)−0.2480 (17)−0.3869 (13)0.065 (3)
C7−0.1043 (11)−0.3097 (11)−0.2015 (9)0.0242 (14)
H7A−0.0935−0.4308−0.28360.029*
H7B0.0128−0.2042−0.15260.029*
C6−0.3269 (10)−0.6762 (10)−0.1849 (9)0.0258 (14)
H6A−0.3384−0.7258−0.30640.031*
N1−0.1353 (8)−0.3207 (8)−0.0490 (7)0.0210 (11)
C5−0.2293 (9)−0.4777 (9)−0.0471 (8)0.0181 (12)
C4−0.4036 (11)−0.7908 (11)−0.1270 (11)0.0316 (16)
H4A−0.4675−0.9237−0.21190.038*
C3−0.2596 (12)−0.2759 (12)−0.3062 (10)0.0325 (17)
C2−0.3899 (11)−0.7159 (11)0.0551 (11)0.0297 (15)
H2A−0.4465−0.80020.08620.036*
C1−0.2947 (10)−0.5205 (10)0.1897 (9)0.0239 (13)
H1A−0.2860−0.47120.31030.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0515 (6)0.0375 (5)0.0321 (5)0.0196 (4)0.0162 (4)0.0169 (4)
Cu10.0271 (6)0.0117 (5)0.0069 (5)0.0051 (4)0.0055 (4)0.0022 (4)
C80.025 (3)0.015 (3)0.008 (3)0.008 (2)0.003 (2)0.003 (2)
N40.038 (3)0.017 (3)0.011 (2)0.008 (2)0.008 (2)0.005 (2)
N30.038 (3)0.015 (3)0.011 (2)0.007 (2)0.008 (2)0.006 (2)
N20.075 (7)0.088 (8)0.037 (5)0.052 (6)0.018 (4)0.031 (5)
C70.039 (4)0.027 (3)0.017 (3)0.016 (3)0.018 (3)0.014 (3)
C60.029 (3)0.020 (3)0.012 (3)0.009 (3)0.004 (3)−0.002 (2)
N10.035 (3)0.017 (2)0.010 (2)0.010 (2)0.009 (2)0.006 (2)
C50.021 (3)0.019 (3)0.013 (3)0.009 (2)0.006 (2)0.008 (2)
C40.030 (4)0.017 (3)0.032 (4)0.004 (3)0.006 (3)0.005 (3)
C30.049 (5)0.037 (4)0.014 (3)0.021 (4)0.015 (3)0.013 (3)
C20.028 (3)0.024 (4)0.033 (4)0.006 (3)0.010 (3)0.015 (3)
C10.029 (3)0.024 (3)0.018 (3)0.010 (3)0.009 (3)0.010 (3)

Geometric parameters (Å, °)

Br1—Cu12.3385 (10)C7—H7B0.9700
Cu1—N32.012 (5)C6—C41.368 (11)
C8—N31.379 (8)C6—C51.407 (9)
C8—C11.387 (9)C6—H6A0.9300
C8—C51.395 (8)N1—C51.363 (9)
N4—N31.316 (8)C4—C21.402 (11)
N4—N11.333 (7)C4—H4A0.9300
N2—C31.118 (12)C2—C11.383 (10)
C7—N11.462 (8)C2—H2A0.9300
C7—C31.470 (10)C1—H1A0.9300
C7—H7A0.9700
N3—Cu1—Br189.46 (16)N4—N1—C5111.7 (5)
N3—C8—C1132.2 (6)N4—N1—C7118.6 (6)
N3—C8—C5106.6 (6)C5—N1—C7129.7 (6)
C1—C8—C5121.2 (6)N1—C5—C8104.5 (5)
N3—N4—N1107.1 (5)N1—C5—C6132.8 (6)
N4—N3—C8110.1 (5)C8—C5—C6122.7 (6)
N4—N3—Cu1118.1 (4)C6—C4—C2122.7 (7)
C8—N3—Cu1131.4 (4)C6—C4—H4A118.7
N1—C7—C3111.1 (6)C2—C4—H4A118.7
N1—C7—H7A109.4N2—C3—C7178.4 (10)
C3—C7—H7A109.4C1—C2—C4122.0 (7)
N1—C7—H7B109.4C1—C2—H2A119.0
C3—C7—H7B109.4C4—C2—H2A119.0
H7A—C7—H7B108.0C2—C1—C8116.3 (6)
C4—C6—C5115.1 (6)C2—C1—H1A121.9
C4—C6—H6A122.5C8—C1—H1A121.9
C5—C6—H6A122.5
N1—N4—N3—C8−0.5 (8)N4—N1—C5—C8−0.4 (7)
N1—N4—N3—Cu1172.6 (4)C7—N1—C5—C8179.9 (7)
C1—C8—N3—N4−178.7 (7)N4—N1—C5—C6179.3 (7)
C5—C8—N3—N40.3 (8)C7—N1—C5—C6−0.5 (12)
C1—C8—N3—Cu19.4 (11)N3—C8—C5—N10.0 (7)
C5—C8—N3—Cu1−171.6 (5)C1—C8—C5—N1179.2 (6)
N3i—Cu1—N3—N4−167 (92)N3—C8—C5—C6−179.7 (6)
Br1i—Cu1—N3—N459.4 (5)C1—C8—C5—C6−0.6 (10)
Br1—Cu1—N3—N4−120.6 (5)C4—C6—C5—N1179.8 (7)
N3i—Cu1—N3—C84(93)C4—C6—C5—C8−0.5 (10)
Br1i—Cu1—N3—C8−129.2 (6)C5—C6—C4—C21.3 (11)
Br1—Cu1—N3—C850.8 (6)N1—C7—C3—N2150 (33)
N3—N4—N1—C50.5 (8)C6—C4—C2—C1−1.0 (12)
N3—N4—N1—C7−179.7 (6)C4—C2—C1—C8−0.1 (11)
C3—C7—N1—N4−91.8 (8)N3—C8—C1—C2179.7 (7)
C3—C7—N1—C587.9 (9)C5—C8—C1—C20.9 (10)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···Br1ii0.972.793.744 (7)168
C7—H7B···Br1iii0.972.913.421 (7)114

Symmetry codes: (ii) −x, −y−1, −z; (iii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2178).

References

  • Danan, A., Charon, D., Kirkiacharian, S., Bories, C. & Loiseau, P. M. (1997). Farmaco, 52, 227–229. [PubMed]
  • Hang, T. & Ye, Q. (2008). Acta Cryst. E64, m758. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, X.-B. & Ye, Q. (2007). Acta Cryst. E63, o4607.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography