PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m996–m997.
Published online 2008 July 5. doi:  10.1107/S1600536808019326
PMCID: PMC2961922

Di-μ-aqua-bis­[diaqua­bis(thio­cyanato-κN)iron(II)] 4-(4-chloro­phen­yl)-1,2,4-triazole hexa­solvate

Abstract

The title complex, [Fe2(NCS)4(H2O)6]·6C8H6ClN3, comprises two distorted octa­hedral iron(II) centers straddling a crystallographic inversion center and bridged by two aqua O atoms to form a quadrilateral core. The aqua O atom of the core is involved in hydrogen bonds with the triazole N atoms of the solvent mol­ecules, generating one-dimensional ladder motifs, and three inter­molecular C—H(...)S hydrogen bonds, forming a three-dimensional hydrogen-bonding network.

Related literature

For related literature, see: Hsu et al. (1999 [triangle]); MacMurdo et al. (2000 [triangle]); Nordlund & Eklund (1993 [triangle]); Sazinsky et al. (2004 [triangle]); Stubbe & Van der Donk (1998 [triangle]); Yoon et al. (2004 [triangle]); Zheng et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m996-scheme1.jpg

Experimental

Crystal data

  • [Fe2(NCS)4(H2O)6]·6C8H6ClN3
  • M r = 1529.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m996-efi1.jpg
  • a = 7.944 (3) Å
  • b = 11.085 (5) Å
  • c = 19.912 (10) Å
  • α = 105.613 (10)°
  • β = 97.750 (10)°
  • γ = 97.932 (7)°
  • V = 1645.1 (12) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 298 (2) K
  • 0.25 × 0.21 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.810, T max = 0.865
  • 8642 measured reflections
  • 5705 independent reflections
  • 2903 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.076
  • S = 0.77
  • 5705 reflections
  • 439 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019326/si2093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019326/si2093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The diiron unit, with a carboxylate-rich coordination environment, continue to attract considerable attention due to the enzyme catalysis activity, which occur in related multicompent dioxygen dependent enzymes, including toluene monooxygenase (Sazinsky et al., 2004), the R2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contained the diiron center, the structure of a series of Fe2(II,II) (MacMurdo et al., 2000), Fe2(III,III) (Zheng et al., 1999) and Fe2(III,IV) (Hsu et al., 1999) complexes with a central 2Fe2O quadrilateral have been currently obtained. Compared with the chelating to the iron atoms with the carboxylic oxygen atoms, it is rarely reported that the quadrilateral center includes both aqueous oxygen atoms. In order to explore the furthur details of the coordinated environment of the diiron system, the title complex was synthesized. As shown in Fig. 1, the complex structure comprises two distorted octahedron iron(II) centers straddling a crystallographic inversion center bridged by two aqueous oxygen atoms to form a quadrilateral core. The separation between the iron atoms is 3.523 (2) Å, which is remarkably different from that 3.0430 (7)Å reported previously, owing to the absence of two carboxylate ligands (Yoon et al., 2004). Moreover, the distance of Fe—Fe is comparatively distinguished from that diiron containing the other higher valence of iron (MacMurdo et al., 2000; Zheng et al., 1999; Hsu et al., 1999). The bond lengths of Fe—O1 and Fe—O1a are 2.264 (3) and 2.281 (2) Å, and the angles of O1—Fe—O1a and Fe1a—O1—Fe are 78.36 (9)° and 101.64 (9)°. Each Fe(II) center resides in a six-coordinated octahedron of N2O4. On the equator plane, the center is bridged by two symmetrical O1 (water) to form the quadrilateral core with the mean distance of 2.272 (2) Å, and is connected with O2 and O3 offered by different waters as the terminal ligands with the bond lengths 2.102 (3)Å and 2.100 (2) Å. The axial positions are occupied by two N atoms from the NCS- anions with the distances 2.086 (3)Å and 2.107 (3)Å to the iron core. Selected bonds and angles are listed in Table 1. As indicated in Fig.2, the classic intermolecular O—H···N H-bonds are formed between the triazol nitrogen atom supplied by the uncoordinated organic ligand 1,2,4-triazol-chloro-benzene and aquous oxygen atoms supplied by the bridging and terminal water ligands to generate a one-dimension ladder structure with the N···O separation ranged from 2.803 (2)Å to 2.866 (4) Å. Moreover, there are three weak intermolecular hydrogen bonding contacts C—H···S that form a three-dimensional network with the C···S distances between 3.624 (5) Å and 3.783 (5) Å. The details of the hydrogen bonds are shown in Table 2.

Experimental

The compound was synthesized under hydrothermal conditions. A mixture of L (L=1,2,4-triazol-chloro-benzene) (0.3 mmol, 0.0538 g), FeSO4˙7H2O (0.1 mmol, 0.028 g), KSCN (0.2 mmol, 0.019 g) and water (10 mL) was placed in a 25 mL acid digestion bomb and heated at 433 K for two days, then equably cooled to room temperature for three days. After washed by 5 ml water for twice, green block crystals of the compound were obtained.

Refinement

The water H atoms were located in a Fourier difference map and refined subject to an O—H restraint 0.88 (1)Å and an H···H restraint of 1.42 (2)Å. Other H atoms were allowed to ride on their parent atoms with C—H distances of 0.93 Å (Uiso(H)=1.2Ueq(C)). All of the non-hydrogen atoms were refined anisotropically.

Figures

Fig. 1.
The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering schemes. H atoms have been omitted for clarity. Atoms of the inversion-related half-complex are indicated with A, symmetry code: (-x + 1, -y, -z ...
Fig. 2.
The three-dimensional structure of the title complex, the chains were drawn in different colors. Dashed lines indicate hydrogen bonds.

Crystal data

[Fe2(NCS)4(H2O)6]·6C8H6ClN3Z = 1
Mr = 1529.76F000 = 780
Triclinic, P1Dx = 1.544 Mg m3
a = 7.944 (3) ÅMo Kα radiation λ = 0.71073 Å
b = 11.085 (5) ÅCell parameters from 1471 reflections
c = 19.912 (10) Åθ = 2.5–22.0º
α = 105.613 (10)ºµ = 0.88 mm1
β = 97.750 (10)ºT = 298 (2) K
γ = 97.932 (7)ºBlock, green
V = 1645.1 (12) Å30.25 × 0.21 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer5705 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.811, Tmax = 0.865k = −11→13
8642 measured reflectionsl = −21→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076  w = 1/[σ2(Fo2) + (0.0191P)2] where P = (Fo2 + 2Fc2)/3
S = 0.77(Δ/σ)max = 0.002
5705 reflectionsΔρmax = 0.25 e Å3
439 parametersΔρmin = −0.24 e Å3
9 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.53640 (6)0.12392 (5)0.46090 (2)0.04255 (16)
Cl10.81665 (15)0.70325 (12)−0.09593 (6)0.0942 (4)
Cl20.41822 (16)0.88209 (11)0.91545 (5)0.0932 (4)
Cl30.28229 (14)0.59403 (11)1.00137 (5)0.0879 (4)
N10.5944 (4)0.2571 (3)0.56111 (15)0.0518 (9)
N20.4754 (3)−0.0065 (3)0.35844 (15)0.0493 (8)
N31.0886 (4)1.1192 (3)0.31387 (16)0.0633 (10)
N40.9153 (4)1.0935 (3)0.31608 (16)0.0545 (9)
N50.9562 (4)0.9986 (3)0.20814 (15)0.0469 (8)
N60.2192 (4)0.4095 (3)0.51909 (16)0.0575 (9)
N70.0498 (4)0.3852 (3)0.53051 (17)0.0575 (9)
N80.2018 (4)0.5377 (3)0.62253 (16)0.0447 (8)
N90.1490 (4)0.1463 (3)0.59896 (14)0.0468 (8)
N10−0.0244 (4)0.1290 (3)0.60322 (15)0.0461 (8)
N110.1199 (3)0.2618 (3)0.70379 (14)0.0395 (7)
O10.3213 (3)0.0112 (2)0.49662 (13)0.0402 (6)
O20.7680 (3)0.2021 (3)0.43624 (14)0.0524 (7)
O30.3662 (3)0.2333 (3)0.42643 (14)0.0517 (7)
S10.67311 (13)0.44880 (10)0.69114 (5)0.0643 (3)
S20.40098 (12)−0.15078 (10)0.21581 (5)0.0616 (3)
C10.6275 (4)0.3375 (3)0.61526 (19)0.0414 (9)
C20.4443 (4)−0.0668 (3)0.29919 (19)0.0432 (10)
C30.8410 (5)1.0220 (4)0.2526 (2)0.0539 (11)
H70.72290.99060.23940.065*
C41.1071 (5)1.0625 (4)0.2506 (2)0.0658 (13)
H81.21321.06510.23570.079*
C50.9232 (5)0.9260 (4)0.13488 (19)0.0478 (10)
C61.0521 (5)0.9321 (4)0.0947 (2)0.0678 (13)
H91.15980.98280.11540.081*
C71.0201 (5)0.8626 (4)0.0238 (2)0.0769 (14)
H101.10650.8654−0.00320.092*
C80.8611 (5)0.7902 (4)−0.00595 (19)0.0603 (11)
C90.7322 (5)0.7823 (4)0.0331 (2)0.0647 (12)
H110.62460.73180.01200.078*
C100.7645 (5)0.8500 (4)0.1036 (2)0.0633 (12)
H120.67840.84460.13050.076*
C110.0450 (5)0.4635 (4)0.5915 (2)0.0558 (11)
H13−0.05400.46830.61150.067*
C120.3038 (5)0.5010 (4)0.5745 (2)0.0594 (11)
H140.41980.53640.58020.071*
C130.2501 (5)0.6260 (3)0.69190 (19)0.0439 (9)
C140.1375 (5)0.6350 (4)0.7392 (2)0.0592 (11)
H150.02650.58670.72500.071*
C150.1885 (5)0.7152 (4)0.8074 (2)0.0665 (12)
H160.11120.72200.83890.080*
C160.3512 (6)0.7843 (4)0.82879 (19)0.0579 (11)
C170.4632 (5)0.7791 (4)0.7819 (2)0.0668 (13)
H170.57300.82920.79630.080*
C180.4138 (5)0.7001 (4)0.7134 (2)0.0657 (12)
H180.49020.69660.68170.079*
C19−0.0374 (4)0.1979 (3)0.66556 (19)0.0474 (10)
H19−0.14100.20290.68210.057*
C200.2307 (5)0.2255 (3)0.65901 (19)0.0497 (10)
H200.34970.25360.66990.060*
C210.1591 (4)0.3441 (3)0.77494 (18)0.0412 (9)
C220.0297 (4)0.3605 (3)0.81508 (19)0.0527 (11)
H21−0.08330.31910.79540.063*
C230.0681 (5)0.4380 (4)0.8839 (2)0.0591 (11)
H22−0.01940.45000.91040.071*
C240.2350 (5)0.4975 (4)0.91359 (19)0.0560 (11)
C250.3640 (5)0.4839 (4)0.8742 (2)0.0591 (11)
H230.47630.52680.89410.071*
C260.3268 (4)0.4065 (3)0.80535 (19)0.0524 (10)
H240.41470.39610.77900.063*
H10.237 (3)−0.039 (3)0.4646 (12)0.094 (15)*
H20.276 (4)0.058 (3)0.5303 (14)0.108 (18)*
H30.854 (3)0.260 (3)0.4649 (14)0.108 (18)*
H40.809 (4)0.170 (3)0.3975 (10)0.078 (15)*
H50.323 (4)0.287 (3)0.4580 (14)0.100 (17)*
H60.279 (3)0.192 (3)0.3924 (12)0.085 (15)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0324 (3)0.0523 (3)0.0402 (3)0.0071 (3)0.0074 (2)0.0088 (3)
Cl10.0811 (9)0.1224 (11)0.0619 (7)0.0147 (8)0.0189 (6)−0.0027 (7)
Cl20.1116 (11)0.0920 (9)0.0594 (7)0.0173 (8)0.0104 (7)−0.0025 (6)
Cl30.0801 (8)0.1053 (10)0.0563 (7)−0.0014 (7)0.0202 (6)−0.0076 (7)
N10.043 (2)0.057 (2)0.050 (2)0.0085 (17)0.0069 (16)0.0060 (17)
N20.0364 (19)0.060 (2)0.050 (2)0.0120 (16)0.0093 (16)0.0124 (18)
N30.046 (2)0.089 (3)0.051 (2)0.0173 (19)0.0071 (18)0.012 (2)
N40.040 (2)0.072 (2)0.052 (2)0.0103 (18)0.0118 (17)0.0165 (18)
N50.0368 (19)0.060 (2)0.048 (2)0.0127 (17)0.0119 (17)0.0190 (17)
N60.050 (2)0.057 (2)0.059 (2)0.0136 (18)0.0077 (18)0.0059 (18)
N70.047 (2)0.057 (2)0.062 (2)0.0009 (18)0.0069 (18)0.0117 (19)
N80.0355 (19)0.046 (2)0.051 (2)0.0050 (16)0.0086 (16)0.0118 (16)
N90.0387 (19)0.052 (2)0.046 (2)0.0069 (16)0.0086 (16)0.0082 (17)
N100.0346 (19)0.054 (2)0.0464 (19)0.0113 (16)0.0056 (15)0.0086 (17)
N110.0306 (18)0.0447 (19)0.0417 (18)0.0053 (15)0.0082 (15)0.0103 (15)
O10.0296 (14)0.0511 (17)0.0322 (14)0.0038 (13)0.0064 (12)0.0007 (12)
O20.0385 (16)0.0649 (19)0.0454 (17)−0.0036 (15)0.0167 (14)0.0044 (15)
O30.0391 (16)0.0647 (19)0.0468 (17)0.0134 (15)0.0049 (15)0.0081 (15)
S10.0502 (7)0.0720 (8)0.0539 (6)0.0008 (6)0.0134 (5)−0.0062 (6)
S20.0481 (7)0.0740 (8)0.0474 (6)−0.0018 (6)0.0103 (5)−0.0020 (6)
C10.024 (2)0.050 (3)0.052 (2)0.0080 (18)0.0129 (18)0.014 (2)
C20.026 (2)0.048 (3)0.051 (2)0.0037 (18)0.0081 (19)0.009 (2)
C30.037 (2)0.066 (3)0.060 (3)0.005 (2)0.014 (2)0.022 (2)
C40.036 (3)0.095 (4)0.060 (3)0.004 (2)0.005 (2)0.019 (3)
C50.042 (2)0.060 (3)0.046 (2)0.014 (2)0.011 (2)0.019 (2)
C60.049 (3)0.092 (3)0.055 (3)−0.002 (2)0.013 (2)0.015 (3)
C70.055 (3)0.116 (4)0.056 (3)0.007 (3)0.020 (2)0.017 (3)
C80.060 (3)0.068 (3)0.053 (3)0.016 (2)0.016 (2)0.013 (2)
C90.048 (3)0.075 (3)0.062 (3)−0.002 (2)0.014 (2)0.008 (2)
C100.046 (3)0.077 (3)0.060 (3)0.002 (2)0.016 (2)0.012 (2)
C110.038 (3)0.060 (3)0.065 (3)0.001 (2)0.013 (2)0.014 (2)
C120.043 (2)0.066 (3)0.064 (3)0.012 (2)0.015 (2)0.006 (2)
C130.042 (2)0.046 (2)0.047 (2)0.010 (2)0.011 (2)0.018 (2)
C140.048 (3)0.062 (3)0.070 (3)0.008 (2)0.019 (2)0.021 (2)
C150.070 (3)0.072 (3)0.057 (3)0.013 (3)0.024 (2)0.012 (2)
C160.070 (3)0.054 (3)0.045 (3)0.011 (2)0.008 (2)0.009 (2)
C170.059 (3)0.069 (3)0.057 (3)−0.008 (2)0.009 (2)0.002 (2)
C180.056 (3)0.077 (3)0.060 (3)−0.002 (2)0.022 (2)0.015 (2)
C190.027 (2)0.062 (3)0.052 (2)0.004 (2)0.0068 (19)0.016 (2)
C200.034 (2)0.060 (3)0.055 (3)0.010 (2)0.018 (2)0.010 (2)
C210.034 (2)0.046 (2)0.045 (2)0.0076 (18)0.0099 (18)0.0128 (19)
C220.035 (2)0.066 (3)0.050 (3)0.002 (2)0.011 (2)0.008 (2)
C230.047 (3)0.072 (3)0.059 (3)0.012 (2)0.023 (2)0.013 (2)
C240.063 (3)0.055 (3)0.046 (3)0.007 (2)0.013 (2)0.007 (2)
C250.044 (3)0.068 (3)0.054 (3)0.001 (2)0.011 (2)0.003 (2)
C260.036 (2)0.065 (3)0.053 (3)0.009 (2)0.016 (2)0.008 (2)

Geometric parameters (Å, °)

Fe1—N12.086 (3)S2—C21.633 (4)
Fe1—O22.100 (2)C3—H70.9300
Fe1—O32.102 (3)C4—H80.9300
Fe1—N22.107 (3)C5—C101.378 (4)
Fe1—O1i2.264 (3)C5—C61.387 (4)
Fe1—O12.281 (2)C6—C71.383 (5)
Cl1—C81.752 (4)C6—H90.9300
Cl2—C161.738 (4)C7—C81.362 (5)
Cl3—C241.745 (4)C7—H100.9300
N1—C11.169 (4)C8—C91.373 (4)
N2—C21.162 (4)C9—C101.372 (4)
N3—C41.285 (4)C9—H110.9300
N3—N41.376 (4)C10—H120.9300
N4—C31.305 (4)C11—H130.9300
N5—C41.351 (4)C12—H140.9300
N5—C31.360 (4)C13—C141.377 (4)
N5—C51.432 (4)C13—C181.384 (4)
N6—C121.306 (4)C14—C151.380 (4)
N6—N71.397 (4)C14—H150.9300
N7—C111.298 (4)C15—C161.357 (5)
N8—C121.352 (4)C15—H160.9300
N8—C111.359 (4)C16—C171.370 (4)
N8—C131.428 (4)C17—C181.378 (4)
N9—C201.300 (4)C17—H170.9300
N9—N101.381 (3)C18—H180.9300
N10—C191.296 (4)C19—H190.9300
N11—C191.361 (4)C20—H200.9300
N11—C201.359 (4)C21—C261.387 (4)
N11—C211.429 (4)C21—C221.387 (4)
O1—Fe1i2.264 (3)C22—C231.374 (4)
O1—H10.869 (10)C22—H210.9300
O1—H20.880 (10)C23—C241.371 (4)
O2—H30.884 (10)C23—H220.9300
O2—H40.881 (10)C24—C251.372 (4)
O3—H50.885 (10)C25—C261.375 (4)
O3—H60.875 (10)C25—H230.9300
S1—C11.632 (4)C26—H240.9300
N1—Fe1—O290.22 (11)C8—C7—H10120.3
N1—Fe1—O389.68 (12)C6—C7—H10120.3
O2—Fe1—O3101.01 (10)C7—C8—C9121.6 (4)
N1—Fe1—N2178.33 (12)C7—C8—Cl1120.2 (3)
O2—Fe1—N289.47 (11)C9—C8—Cl1118.2 (3)
O3—Fe1—N288.76 (11)C8—C9—C10119.0 (4)
N1—Fe1—O1i90.32 (11)C8—C9—H11120.5
O2—Fe1—O1i89.04 (10)C10—C9—H11120.5
O3—Fe1—O1i169.95 (9)C9—C10—C5120.7 (4)
N2—Fe1—O1i91.32 (11)C9—C10—H12119.6
N1—Fe1—O189.79 (10)C5—C10—H12119.6
O2—Fe1—O1167.40 (10)N7—C11—N8111.9 (3)
O3—Fe1—O191.59 (10)N7—C11—H13124.0
N2—Fe1—O190.87 (10)N8—C11—H13124.0
O1i—Fe1—O178.36 (9)N6—C12—N8111.7 (3)
C1—N1—Fe1175.9 (3)N6—C12—H14124.2
C2—N2—Fe1172.4 (3)N8—C12—H14124.2
C4—N3—N4107.0 (3)C14—C13—C18119.2 (4)
C3—N4—N3105.8 (3)C14—C13—N8120.7 (3)
C4—N5—C3102.1 (3)C18—C13—N8120.1 (3)
C4—N5—C5129.6 (3)C15—C14—C13120.4 (4)
C3—N5—C5128.4 (3)C15—C14—H15119.8
C12—N6—N7106.4 (3)C13—C14—H15119.8
C11—N7—N6106.3 (3)C16—C15—C14120.1 (4)
C12—N8—C11103.7 (3)C16—C15—H16120.0
C12—N8—C13128.3 (3)C14—C15—H16120.0
C11—N8—C13127.9 (3)C15—C16—C17120.2 (4)
C20—N9—N10106.8 (3)C15—C16—Cl2120.3 (3)
C19—N10—N9106.9 (3)C17—C16—Cl2119.4 (3)
C19—N11—C20103.5 (3)C16—C17—C18120.3 (4)
C19—N11—C21128.0 (3)C16—C17—H17119.8
C20—N11—C21128.5 (3)C18—C17—H17119.8
Fe1i—O1—Fe1101.64 (9)C17—C18—C13119.7 (4)
Fe1i—O1—H1104 (3)C17—C18—H18120.1
Fe1—O1—H1119 (2)C13—C18—H18120.1
Fe1i—O1—H2110 (3)N10—C19—N11111.4 (3)
Fe1—O1—H2114 (2)N10—C19—H19124.3
H1—O1—H2108 (2)N11—C19—H19124.3
Fe1—O2—H3128 (2)N9—C20—N11111.3 (3)
Fe1—O2—H4125 (2)N9—C20—H20124.3
H3—O2—H4106 (2)N11—C20—H20124.3
Fe1—O3—H5119 (3)C26—C21—C22119.0 (3)
Fe1—O3—H6117 (2)C26—C21—N11120.8 (3)
H5—O3—H6106 (2)C22—C21—N11120.2 (3)
N1—C1—S1179.6 (3)C23—C22—C21120.1 (3)
N2—C2—S2179.7 (3)C23—C22—H21119.9
N4—C3—N5112.2 (3)C21—C22—H21119.9
N4—C3—H7123.9C24—C23—C22120.2 (4)
N5—C3—H7123.9C24—C23—H22119.9
N3—C4—N5112.9 (4)C22—C23—H22119.9
N3—C4—H8123.6C25—C24—C23120.4 (4)
N5—C4—H8123.6C25—C24—Cl3119.9 (3)
C10—C5—C6119.4 (4)C23—C24—Cl3119.7 (3)
C10—C5—N5120.8 (3)C24—C25—C26119.8 (4)
C6—C5—N5119.8 (3)C24—C25—H23120.1
C5—C6—C7119.9 (4)C26—C25—H23120.1
C5—C6—H9120.1C25—C26—C21120.4 (3)
C7—C6—H9120.1C25—C26—H24119.8
C8—C7—C6119.4 (4)C21—C26—H24119.8

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10ii0.87 (3)1.97 (3)2.827 (4)170 (3)
O1—H2···N90.88 (3)1.94 (3)2.819 (4)173 (3)
O2—H3···N7iii0.88 (3)1.98 (3)2.866 (5)178 (3)
O2—H4···N4iv0.88 (2)1.97 (3)2.853 (4)175 (3)
O3—H5···N60.88 (3)1.92 (3)2.802 (4)174 (3)
O3—H6···N3v0.88 (2)1.93 (2)2.803 (4)172 (3)
C3—H7···S2vi0.932.723.624 (5)165
C22—H21···S2ii0.932.873.736 (5)156
C11—H13···S1vii0.932.873.783 (5)167

Symmetry codes: (ii) −x, −y, −z+1; (iii) x+1, y, z; (iv) x, y−1, z; (v) x−1, y−1, z; (vi) x, y+1, z; (vii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2093).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc.121, 5230–5237.
  • MacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem.39, 2254–2255. [PubMed]
  • Nordlund, P. & Eklund, H. (1993). J. Mol. Biol.232, 123–164. [PubMed]
  • Sazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem.279, 30600–30610. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stubbe, J. & Van der Donk, W. A. (1998). Chem. Rev.98, 705–762. [PubMed]
  • Yoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805–2812.
  • Zheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc.121, 2226–2235.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography