PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m994.
Published online 2008 July 5. doi:  10.1107/S1600536808019429
PMCID: PMC2961920

Potassium 2-iodo­benzene­sulfonate monohydrate

Abstract

In the crystal structure of the title compound, K+·C6H4IO3S·H2O, the potasium cation is 2.693 (3)–2.933 (3) Å from the sulfonate and water O atoms (including symmetry-related atoms) and forms a two-dimensional sheet-like structure in the bc plane, with the iodo­benzene rings protruding above and below. The water mol­ecule of crystallization is hydrogen-bonded to sulfonate O atoms within this two-dimensional arrangement. Symmetry-related iodo­benzene rings are arranged perpendicular to one another with the I atom ca 4.1 Å from the centroid of the neighbouring benzene ring. In the crystal structure, these two-dimensional sheet-like supramolecular structures are arranged parallel to one another, stacked along the a-axis direction, with the benzene rings inter­digitated.

Related literature

For related literature see: Chau & Kice (1977 [triangle]); Re et al. (1999 [triangle]); Yoshiizumi et al.(2004 [triangle]); Siddiqui et al. (2006 [triangle], 2007 [triangle]); Gowda et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m994-scheme1.jpg

Experimental

Crystal data

  • K+·C6H4IO3S·H2O
  • M r = 340.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m994-efi1.jpg
  • a = 13.8993 (4) Å
  • b = 9.0678 (3) Å
  • c = 8.1654 (2) Å
  • β = 92.260 (2)°
  • V = 1028.33 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.70 mm−1
  • T = 296 (2) K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker Kappa-APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.543, T max = 0.754
  • 12144 measured reflections
  • 2804 independent reflections
  • 1961 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.113
  • S = 1.00
  • 2804 reflections
  • 118 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 1.43 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019429/cs2082sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019429/cs2082Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for funding under its Indigenous 5000 PhD Scholarship Scheme, Batch II (PIN 042-120607-Ps2-183).

supplementary crystallographic information

Comment

Sulfonic acids belong to an important class of organic compounds particularly the aromatics which have wide applications in different areas (Re et al., 1999). Derivatives of the sodium salt of benzene sulfonic acid were reported as being a scavenger receptor inhibitor (Yoshiizumi et al., 2004). Herein, we report on the crystal structure of the title compound, the potassium salt of 2-iodobenzenesulfoninc acid, in continuation of our research work on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2006, 2007).

The molecular stucture of the title compound is shown in Fig. 1. The bond lengths and angles are similar to those reported for other benzene sulfonates, for example, potassium 4-chlorobenzenesulfonate (Gowda et al., 2007). The potasium cation is between 2.693 (3) to 2.933 (3) Å from the sulfonate and water O atoms (including symmetry related O atoms) and forms a two-dimensional sheet-like structure in the bc plane, with the iodobenzene rings protruding above and below (Fig. 2). Symmetry related iodobenzene rings are arranged perpendicular to one another, with the iodine atom ca 4.1 Å from the centroid of the neighbouring benzene ring (Fig. 3). The water molecule of crystallization is hydrogen bonded to sulfonate O-atoms (one normal interaction to atom O1, and one rather long interaction to atom O3), within this two-dimensional arrangement (Table 1).

In the crystal structure these 2-D sheet-like supermolecular structures are arranged parallel to one another up the a direction, with the benzene rings interdigited (Fig. 3).

Experimental

The title compound was prepared following the method used by Chau & Kice (1977), and suitable crystals for X-ray analysis were obtained from the reaction mixture.

Refinement

The water H-atoms were located from a difference Fourier map and initially refined with distance restraints [O—H = 0.88 (2) Å and H···H = 1.45 (2) Å, with Uiso(H) = 1.5Ueq(O)]. In the final rounds of refinement they were held fixed. The C-bond H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The highest residual density peak, of 1.43 e Å-2, is ca 0.84 Å from the Iodine atom.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level [The K···O contacts are shown as a dashed lines].
Fig. 2.
A view down the a axis of the formation of the two-dimensional sheet-like structure formed via the K···O contacts and the O—H···O hydrogen bonds [The hydrogen bonds are shown as dotted lines and ...
Fig. 3.
A view along the b axis of the crystal packing of the title compound [The C-bound H-atoms have been removed for clarity].

Crystal data

K+·C6H4IO3S·H2OF000 = 648
Mr = 340.17Dx = 2.197 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2742 reflections
a = 13.8993 (4) Åθ = 2.7–24.5º
b = 9.0678 (3) ŵ = 3.70 mm1
c = 8.1654 (2) ÅT = 296 (2) K
β = 92.260 (2)ºPrismatic, green
V = 1028.33 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer2804 independent reflections
Radiation source: fine-focus sealed tube1961 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 296(2) Kθmax = 29.3º
[var phi] and ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→19
Tmin = 0.544, Tmax = 0.754k = −12→12
12144 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0572P)2 + 1.0399P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2804 reflectionsΔρmax = 1.43 e Å3
118 parametersΔρmin = −0.68 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.31059 (3)0.31442 (5)0.46378 (5)0.0594 (1)
K10.01753 (8)0.29219 (13)0.97719 (13)0.0477 (4)
S10.13443 (7)0.52155 (13)0.66539 (13)0.0349 (3)
O10.1225 (2)0.5527 (4)0.4923 (4)0.0486 (13)
O1W0.1268 (3)0.5113 (5)1.1461 (4)0.0617 (16)
O20.1159 (3)0.3703 (4)0.7066 (5)0.0579 (13)
O30.0822 (2)0.6239 (5)0.7625 (4)0.0553 (14)
C10.2582 (3)0.5494 (5)0.7203 (5)0.0340 (12)
C20.3324 (3)0.4709 (5)0.6507 (5)0.0363 (12)
C30.4274 (3)0.4961 (6)0.7031 (6)0.0485 (16)
C40.4485 (4)0.5972 (7)0.8240 (7)0.061 (2)
C50.3762 (5)0.6753 (7)0.8924 (8)0.066 (2)
C60.2817 (4)0.6523 (6)0.8416 (7)0.0516 (17)
H1WA0.072100.474801.170600.0930*
H1WB0.139800.517201.249400.0930*
H30.476800.444100.655900.0580*
H40.512100.612600.859600.0730*
H50.390900.744400.973700.0780*
H60.233100.706200.889000.0620*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0543 (2)0.0664 (3)0.0573 (2)0.0127 (2)0.0010 (2)−0.0236 (2)
K10.0522 (6)0.0492 (7)0.0419 (6)−0.0032 (5)0.0056 (5)−0.0034 (5)
S10.0299 (5)0.0414 (6)0.0337 (5)0.0004 (4)0.0041 (4)0.0009 (4)
O10.0388 (17)0.074 (3)0.0328 (16)0.0053 (16)0.0004 (13)0.0044 (15)
O1W0.071 (3)0.071 (3)0.043 (2)−0.003 (2)−0.0001 (17)0.0019 (19)
O20.0394 (18)0.053 (2)0.081 (3)−0.0131 (16)0.0005 (17)0.018 (2)
O30.0424 (19)0.075 (3)0.049 (2)0.0126 (18)0.0087 (15)−0.0112 (18)
C10.033 (2)0.035 (2)0.034 (2)−0.0023 (17)0.0020 (16)−0.0002 (17)
C20.037 (2)0.037 (2)0.035 (2)0.0006 (18)0.0011 (17)0.0011 (18)
C30.035 (2)0.053 (3)0.058 (3)0.001 (2)0.007 (2)0.005 (2)
C40.041 (3)0.069 (4)0.072 (4)−0.016 (3)−0.014 (3)0.000 (3)
C50.063 (4)0.068 (4)0.065 (4)−0.021 (3)−0.010 (3)−0.020 (3)
C60.049 (3)0.056 (3)0.050 (3)−0.003 (2)0.004 (2)−0.014 (2)

Geometric parameters (Å, °)

I1—C22.097 (4)O1W—H1WB0.8600
K1—O1W2.827 (4)O1W—H1WA0.8600
K1—O22.737 (4)C1—C61.390 (7)
K1—S1i3.4125 (16)C1—C21.393 (6)
K1—O1i2.933 (3)C2—C31.391 (6)
K1—O3i2.805 (4)C3—C41.371 (8)
K1—O1Wii2.838 (4)C4—C51.367 (9)
K1—O3ii2.693 (3)C5—C61.378 (9)
K1—O2iii2.711 (4)C3—H30.9300
S1—O11.444 (3)C4—H40.9300
S1—O21.438 (4)C5—H50.9300
S1—O31.436 (4)C6—H60.9300
S1—C11.779 (4)
I1···O13.407 (3)O3···H62.4200
I1···O23.455 (4)O3···H1WAii2.4100
I1···K1iv4.1921 (12)C2···I1iii3.658 (4)
I1···C2iv3.658 (4)C2···H5viii3.0800
I1···H4v3.3500C3···H5viii3.0400
K1···I1iii4.1921 (12)H1WA···O1vii2.7800
O1···I13.407 (3)H1WB···O1vii2.0300
O1···O1Wvi2.855 (5)H4···I1ix3.3500
O1W···O1vii2.855 (5)H5···C2x3.0800
O2···I13.455 (4)H5···C3x3.0400
O1···H6viii2.8200H6···O32.4200
O1···H1WAvi2.7800H6···O1x2.8200
O1···H1WBvi2.0300
O1W—K1—O286.34 (11)O3—S1—C1105.9 (2)
S1i—K1—O1W170.16 (8)K1xi—S1—O353.42 (14)
O1i—K1—O1W145.53 (10)K1xi—S1—C1124.29 (16)
O1W—K1—O3i164.60 (12)K1xi—O1—S196.47 (16)
O1W—K1—O1Wii95.19 (13)K1—O1W—K1ii84.81 (11)
O1W—K1—O3ii72.52 (11)K1—O2—S1122.4 (2)
O1W—K1—O2iii78.36 (12)K1—O2—K1iv99.37 (13)
S1i—K1—O2103.47 (9)K1iv—O2—S1116.5 (2)
O1i—K1—O2127.91 (11)K1xi—O3—S1102.30 (17)
O2—K1—O3i80.00 (11)K1ii—O3—S1154.9 (3)
O1Wii—K1—O285.40 (12)K1xi—O3—K1ii98.13 (12)
O2—K1—O3ii148.56 (13)K1ii—O1W—H1WB115.00
O2—K1—O2iii116.37 (13)K1—O1W—H1WB128.00
S1i—K1—O1i24.87 (7)H1WA—O1W—H1WB87.00
S1i—K1—O3i24.28 (8)K1—O1W—H1WA52.00
S1i—K1—O1Wii84.90 (9)K1ii—O1W—H1WA73.00
S1i—K1—O3ii98.14 (9)S1—C1—C6118.2 (4)
S1i—K1—O2iii97.67 (9)C2—C1—C6118.5 (4)
O1i—K1—O3i49.09 (10)S1—C1—C2123.3 (3)
O1i—K1—O1Wii91.88 (11)I1—C2—C3116.3 (3)
O1i—K1—O3ii77.19 (11)C1—C2—C3120.0 (4)
O1i—K1—O2iii81.79 (11)I1—C2—C1123.7 (3)
O1Wii—K1—O3i76.77 (12)C2—C3—C4120.3 (4)
O3i—K1—O3ii116.67 (10)C3—C4—C5120.1 (5)
O2iii—K1—O3i114.11 (12)C4—C5—C6120.4 (6)
O1Wii—K1—O3ii73.97 (11)C1—C6—C5120.7 (5)
O1Wii—K1—O2iii156.45 (12)C2—C3—H3120.00
O2iii—K1—O3ii82.50 (12)C4—C3—H3120.00
O1—S1—O2113.6 (2)C3—C4—H4120.00
O1—S1—O3111.9 (2)C5—C4—H4120.00
O1—S1—C1106.95 (18)C4—C5—H5120.00
K1xi—S1—O158.66 (14)C6—C5—H5120.00
O2—S1—O3112.8 (2)C1—C6—H6120.00
O2—S1—C1104.9 (2)C5—C6—H6120.00
K1xi—S1—O2130.67 (17)
O2—K1—O1W—K1ii85.04 (11)O2—S1—O1—K1xi124.5 (2)
O1i—K1—O1W—K1ii−100.99 (19)O3—S1—O1—K1xi−4.7 (2)
O1Wii—K1—O1W—K1ii0.00 (10)C1—S1—O1—K1xi−120.27 (17)
O3ii—K1—O1W—K1ii−71.38 (11)O1—S1—O2—K1−139.0 (2)
O2iii—K1—O1W—K1ii−157.09 (12)O1—S1—O2—K1iv−16.9 (3)
O1W—K1—O2—S1−42.7 (3)O3—S1—O2—K1−10.3 (3)
O1W—K1—O2—K1iv−172.53 (14)O3—S1—O2—K1iv111.9 (2)
S1i—K1—O2—S1136.5 (2)C1—S1—O2—K1104.5 (2)
S1i—K1—O2—K1iv6.62 (12)C1—S1—O2—K1iv−133.3 (2)
O1i—K1—O2—S1141.7 (2)K1xi—S1—O2—K1−70.9 (3)
O1i—K1—O2—K1iv11.79 (19)K1xi—S1—O2—K1iv51.3 (3)
O3i—K1—O2—S1130.2 (3)O1—S1—O3—K1xi5.0 (2)
O3i—K1—O2—K1iv0.34 (12)O1—S1—O3—K1ii148.8 (4)
O1Wii—K1—O2—S152.9 (3)O2—S1—O3—K1xi−124.6 (2)
O1Wii—K1—O2—K1iv−77.01 (13)O2—S1—O3—K1ii19.2 (5)
O3ii—K1—O2—S14.4 (4)C1—S1—O3—K1xi121.20 (17)
O3ii—K1—O2—K1iv−125.51 (18)C1—S1—O3—K1ii−95.0 (5)
O2iii—K1—O2—S1−117.8 (3)K1xi—S1—O3—K1ii143.8 (5)
O2iii—K1—O2—K1iv112.39 (14)O1—S1—C1—C2−59.9 (4)
O2—K1—S1i—O1i170.27 (18)O1—S1—C1—C6121.7 (4)
O2—K1—S1i—O2i74.8 (2)O2—S1—C1—C261.1 (4)
O2—K1—S1i—O3i−15.2 (2)O2—S1—C1—C6−117.4 (4)
O2—K1—S1i—C1i−99.86 (19)O3—S1—C1—C2−179.4 (4)
O1W—K1—O1i—S1i175.60 (18)O3—S1—C1—C62.2 (4)
O2—K1—O1i—S1i−12.0 (2)K1xi—S1—C1—C2−123.1 (3)
O2—K1—O3i—S1i165.0 (2)K1xi—S1—C1—C658.5 (4)
O2—K1—O3i—K1iv−0.34 (12)S1—C1—C2—I12.7 (6)
O1W—K1—O1Wii—K1ii0.00 (11)S1—C1—C2—C3−178.3 (4)
O2—K1—O1Wii—K1ii−85.89 (11)C6—C1—C2—I1−178.9 (4)
O1W—K1—O3ii—S1ii63.9 (4)C6—C1—C2—C30.1 (7)
O1W—K1—O3ii—K1iii−80.44 (12)S1—C1—C6—C5178.1 (4)
O2—K1—O3ii—S1ii13.9 (6)C2—C1—C6—C5−0.4 (8)
O2—K1—O3ii—K1iii−130.4 (2)I1—C2—C3—C4179.6 (4)
O1W—K1—O2iii—K1iii73.96 (12)C1—C2—C3—C40.5 (7)
O1W—K1—O2iii—S1iii−152.5 (3)C2—C3—C4—C5−0.8 (9)
O2—K1—O2iii—K1iii153.89 (12)C3—C4—C5—C60.6 (9)
O2—K1—O2iii—S1iii−72.6 (3)C4—C5—C6—C10.1 (9)

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x, −y+1, −z+2; (iii) x, −y+1/2, z+1/2; (iv) x, −y+1/2, z−1/2; (v) −x+1, y−1/2, −z+3/2; (vi) x, y, z−1; (vii) x, y, z+1; (viii) x, −y+3/2, z−1/2; (ix) −x+1, y+1/2, −z+3/2; (x) x, −y+3/2, z+1/2; (xi) −x, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1vii0.862.032.855 (5)160
O1W—H1WA···O3ii0.862.413.266 (5)179
C6—H6···O30.932.422.834 (6)107

Symmetry codes: (vii) x, y, z+1; (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2082).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chau, M. M. & Kice, J. L. (1977). J. Org. Chem.42, 3265–3270.
  • Gowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, m2222.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Free Radic. Biol. Med.26, 1231–1237. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak.28, 583–589.
  • Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun.37, 767–773.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yoshiizumi, K., Nakajima, F., Dobashi, R., Nishimura, N. & Ikeda, S. (2004). Bioorg. Med. Chem. Lett.14, 2791–2795. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography