PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m990–m991.
Published online 2008 July 5. doi:  10.1107/S1600536808019715
PMCID: PMC2961917

Aqua­{2,2-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}(3-nitro­benzoato)manganese(III)

Abstract

The title compound, [Mn(C16H14N2O2)(C7H4NO4)(H2O)], is a Jahn–Teller-distorted manganese(III) monomer with an octa­hedral geometry. The tetra­dentate Schiff base accommodates the MnIII ion at the centre of a nearly planar square. The axial positions are occupied by a monodentate carboxyl­ate group and a water mol­ecule. Adjacent monomers inter­act through hydrogen bonding between the noncoordinated C=O group of the carboxyl­ate and the coordinated water mol­ecule to produce chains extending parallel to the b axis.

Related literature

For related literature, see: Christou (1989 [triangle]); Pecoraro & Hsieh (2000 [triangle]); Yocum & Pecoraro (2004 [triangle]); Zhang & Janiak (2001 [triangle]); Zouni et al. (2001 [triangle]); Aurangzeb et al. (1994 [triangle]); Hulme et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m990-scheme1.jpg

Experimental

Crystal data

  • [Mn(C16H14N2O2)(C7H4NO4)(H2O)]
  • M r = 505.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m990-efi1.jpg
  • a = 6.7297 (1) Å
  • b = 10.5793 (2) Å
  • c = 29.228 (5) Å
  • β = 95.188 (1)°
  • V = 2072.4 (4) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 5.66 mm−1
  • T = 100 (2) K
  • 0.35 × 0.29 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.245, T max = 0.624
  • 21257 measured reflections
  • 3640 independent reflections
  • 3492 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.092
  • S = 1.11
  • 3640 reflections
  • 308 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and XSHELL (Bruker, 2004 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al. 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019715/si2096sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019715/si2096Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the authorities of SN College, Varkala, Kerala, India, for providing the facilities for this research. We also acknowledge the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

supplementary crystallographic information

Comment

Manganese plays a vital role in several biological systems like the oxygen-evolving complex (OEC) of photosystem II (Zouni et al., 2001) and enzymes like superoxide dismutase, catalase, arginase etc. (Yocum & Pecoraro, 2004). The progress in elucidating the structural and functional aspects of the active-sites of these manganese-containing systems, has essentially been connected to the vast number of inorganic model complexes reported during the last few decades (Christou, 1989; Pecoraro & Hsieh, 2000). Recent reports include a few Schiff base complexes of manganese(III) with ancillary carboxylate ligands (Aurangzeb et al., 1994, Hulme et al., 1997; Zhang & Janiak, 2001). Generally, symmetrical N2O2 Schiff base ligands like the salen(H2salen = N,N'-bis(salicylidene)-1,2-diaminoethane), with aromatic rings amenable to π-π overlap, tend to stabilize µ-phenoxy dimers. Here we report a very rare structural type among such complexes, where the trans coordination positions in an octahedral manganese(III) monomer are occupied by a neutral ligand (H2O) and a monodentate carboxylate group (Fig. 1).

In the title compound, the salen ligand holds the manganese(III) ion at the centre of a nearly planar tetragon consisting of two Mn–O bonds [Mn(1)-O(1) = 1.8879 (15) Å and Mn(1)-O(2) = 1.9113 (15) Å] and two Mn–N bonds [Mn(1)-N(1) = 1.9980 (18) Å and Mn(1)-N(2) = 1.9946 (18)Å]. These bond lengths are comparable to those in complexes containing similar MnN2O2 cores (Aurangzeb et al., 1994; Hulme et al., 1997). Jahn-Teller distortion causes an elongation of the Mn–Ocarb [Mn(1)-O(3) = 2.1513 (15) Å] and the Mn–Oaq [Mn(1)-O(7) = 2.3250 (16) Å] axial bonds (Table 1). Chains running parallel to the b-axis arise from H-bonding interactions between the non-coordinated O atom of the carboxylate and coordinated water molecules on adjacent molecules (Fig.2, Table 2).

Experimental

To a solution of Mn(m—NO2C6H4CO2)2.2H2O (1.00 g, 2.36 mmol) and salicylaldehyde (0.58 g, 4.72 mmol) in methanol (40 ml), ethane-1,2-diamine (0.14 g, 2.36 mmol) was added. The solution was stirred for 20 minutes, filtered and left to evaporation in an open conical flask. Brown crystals were deposited in 2–3 days. These were collected by filtration, washed with methanol, and dried in air. Yield of the title compound was 0.82 g (75.50%) based on manganese.

Refinement

All hydrogen atoms were initially located in the difference map and then were placed in theoretical positions using a riding model for all but the water H atoms which were allowed to rotate freely, O–H = 0.77 and 0.84 Å. Csp2–H = 0.95 Å, Csp3–H = 0.99 Å, Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
ORTEP picture (Farrugia, 1997) of the title compound. Displacement ellipsoids have been drawn at the 50% probability level.
Fig. 2.
Mercury (Macrae et al. 2006) ball and stick packing diagram of the title compound showing hydrogen-bonding chains.

Crystal data

[Mn(C16H14N2O2)(C7H4NO4)(H2O)]F000 = 1040
Mr = 505.36Dx = 1.620 Mg m3
Monoclinic, P21/nCu Kα radiation λ = 1.54178 Å
a = 6.7297 (1) ÅCell parameters from 256 reflections
b = 10.5793 (2) Åθ = 9.7–70.9º
c = 29.228 (5) ŵ = 5.66 mm1
β = 95.188 (1)ºT = 100 (2) K
V = 2072.4 (4) Å3Plate, brown
Z = 40.35 × 0.29 × 0.09 mm

Data collection

Bruker SMART APEXII CCD diffractometer3640 independent reflections
Radiation source: fine-focus sealed tube3492 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.046
T = 100(2) Kθmax = 67.0º
ω and ψ scansθmin = 3.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −7→7
Tmin = 0.245, Tmax = 0.624k = −10→12
21257 measured reflectionsl = −31→34

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092  w = 1/[σ2(Fo2) + (0.0418P)2 + 2.1055P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3640 reflectionsΔρmax = 0.35 e Å3
308 parametersΔρmin = −0.51 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn1−0.00146 (5)0.54194 (3)0.229187 (11)0.01142 (12)
O1−0.2188 (2)0.55831 (14)0.18400 (5)0.0155 (3)
O2−0.1396 (2)0.45279 (14)0.27355 (5)0.0147 (3)
O30.0816 (2)0.36457 (14)0.20036 (5)0.0171 (3)
O40.3542 (2)0.32126 (15)0.16477 (5)0.0197 (4)
O50.2710 (3)0.15274 (18)0.00870 (6)0.0311 (4)
O6−0.0245 (3)0.12490 (17)−0.02568 (5)0.0282 (4)
O7−0.0810 (2)0.73579 (15)0.26027 (5)0.0190 (3)
H1W0.00520.75450.28180.023*
H2W−0.15920.78630.25310.023*
N10.1747 (3)0.63243 (16)0.18849 (6)0.0133 (4)
N20.2479 (3)0.54511 (16)0.27161 (6)0.0129 (4)
N30.0896 (3)0.15170 (18)0.00848 (6)0.0220 (5)
C1−0.2066 (3)0.5574 (2)0.13906 (8)0.0149 (5)
C2−0.3747 (3)0.5194 (2)0.11019 (8)0.0171 (5)
H2−0.49300.49500.12330.020*
C3−0.3700 (4)0.5173 (2)0.06299 (8)0.0223 (5)
H3−0.48480.49070.04420.027*
C4−0.1991 (4)0.5536 (2)0.04252 (8)0.0239 (5)
H4−0.19760.55190.01010.029*
C5−0.0333 (4)0.5917 (2)0.06989 (8)0.0202 (5)
H50.08310.61670.05610.024*
C6−0.0331 (3)0.5945 (2)0.11816 (7)0.0150 (4)
C70.1445 (3)0.63864 (19)0.14441 (7)0.0141 (4)
H70.24640.67480.12810.017*
C80.3601 (3)0.6801 (2)0.21297 (7)0.0159 (5)
H8A0.33620.76220.22780.019*
H8B0.46390.69200.19140.019*
C90.4256 (3)0.5815 (2)0.24879 (7)0.0153 (4)
H9A0.48180.50700.23410.018*
H9B0.52910.61680.27150.018*
C100.2631 (3)0.5163 (2)0.31447 (7)0.0138 (4)
H100.38990.52760.33100.017*
C110.1053 (3)0.46869 (19)0.33948 (7)0.0143 (4)
C120.1515 (4)0.4424 (2)0.38667 (8)0.0173 (5)
H120.28130.46110.40060.021*
C130.0131 (4)0.3906 (2)0.41291 (7)0.0197 (5)
H130.04540.37490.44470.024*
C14−0.1764 (4)0.3614 (2)0.39192 (8)0.0184 (5)
H14−0.27340.32580.40980.022*
C15−0.2250 (3)0.3835 (2)0.34569 (7)0.0157 (4)
H15−0.35410.36150.33220.019*
C16−0.0877 (3)0.43777 (19)0.31824 (7)0.0134 (4)
C170.1704 (3)0.32348 (19)0.16688 (7)0.0142 (4)
C180.0387 (3)0.26862 (19)0.12698 (7)0.0140 (4)
C19−0.1613 (3)0.2428 (2)0.13095 (8)0.0173 (5)
H19−0.21850.26390.15850.021*
C20−0.2791 (4)0.1861 (2)0.09498 (8)0.0200 (5)
H20−0.41510.16760.09840.024*
C21−0.1988 (4)0.1569 (2)0.05438 (8)0.0197 (5)
H21−0.27800.11880.02960.024*
C22−0.0006 (3)0.1846 (2)0.05094 (7)0.0166 (5)
C230.1219 (3)0.2390 (2)0.08636 (7)0.0155 (4)
H230.25860.25560.08300.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0138 (2)0.01245 (19)0.00759 (19)−0.00076 (13)−0.00106 (13)0.00132 (12)
O10.0173 (8)0.0190 (8)0.0097 (8)0.0005 (6)−0.0012 (6)0.0015 (6)
O20.0182 (8)0.0155 (8)0.0099 (7)−0.0004 (6)−0.0023 (6)0.0019 (6)
O30.0262 (9)0.0129 (8)0.0121 (8)0.0011 (6)0.0018 (6)−0.0013 (6)
O40.0206 (9)0.0241 (9)0.0137 (8)−0.0041 (7)−0.0018 (6)0.0007 (6)
O50.0317 (11)0.0424 (11)0.0198 (9)0.0022 (8)0.0059 (7)−0.0056 (8)
O60.0443 (11)0.0275 (9)0.0113 (8)−0.0043 (8)−0.0053 (7)−0.0036 (7)
O70.0211 (9)0.0181 (8)0.0161 (8)0.0047 (6)−0.0063 (6)−0.0028 (6)
N10.0163 (9)0.0107 (9)0.0128 (9)0.0004 (7)0.0004 (7)0.0000 (7)
N20.0162 (10)0.0096 (9)0.0128 (9)0.0004 (7)−0.0003 (7)−0.0009 (7)
N30.0357 (13)0.0190 (10)0.0109 (10)0.0011 (9)−0.0007 (8)−0.0005 (8)
C10.0208 (12)0.0104 (10)0.0130 (11)0.0025 (8)−0.0016 (9)0.0014 (8)
C20.0195 (12)0.0153 (11)0.0156 (11)0.0006 (9)−0.0025 (9)0.0019 (9)
C30.0275 (13)0.0222 (12)0.0153 (12)0.0000 (10)−0.0081 (9)−0.0016 (9)
C40.0343 (14)0.0269 (13)0.0096 (11)0.0018 (10)−0.0026 (10)−0.0007 (9)
C50.0283 (13)0.0180 (12)0.0146 (11)0.0027 (10)0.0036 (9)0.0015 (9)
C60.0224 (12)0.0106 (10)0.0117 (10)0.0024 (9)−0.0010 (8)0.0009 (8)
C70.0201 (12)0.0076 (10)0.0151 (11)0.0013 (8)0.0042 (8)0.0016 (8)
C80.0192 (11)0.0124 (11)0.0160 (11)−0.0031 (8)0.0008 (9)−0.0005 (8)
C90.0142 (11)0.0150 (11)0.0165 (11)−0.0004 (9)0.0001 (8)−0.0003 (9)
C100.0172 (11)0.0099 (10)0.0131 (11)0.0003 (8)−0.0042 (8)−0.0022 (8)
C110.0215 (12)0.0105 (10)0.0106 (11)0.0011 (8)−0.0011 (8)−0.0017 (8)
C120.0244 (12)0.0136 (11)0.0128 (11)0.0005 (9)−0.0043 (9)−0.0009 (8)
C130.0337 (14)0.0159 (11)0.0088 (10)−0.0018 (10)−0.0022 (9)0.0000 (8)
C140.0281 (13)0.0134 (11)0.0141 (11)−0.0028 (9)0.0046 (9)−0.0009 (8)
C150.0201 (11)0.0128 (10)0.0140 (11)0.0004 (9)−0.0002 (8)−0.0010 (8)
C160.0222 (12)0.0083 (10)0.0093 (10)0.0026 (8)−0.0001 (8)−0.0011 (8)
C170.0230 (13)0.0092 (10)0.0100 (10)−0.0020 (8)−0.0008 (8)0.0021 (8)
C180.0215 (12)0.0091 (10)0.0108 (10)0.0015 (8)−0.0024 (8)0.0013 (8)
C190.0218 (12)0.0135 (11)0.0166 (11)0.0022 (9)0.0022 (9)0.0004 (8)
C200.0165 (11)0.0191 (12)0.0237 (12)−0.0005 (9)−0.0024 (9)0.0009 (9)
C210.0260 (13)0.0158 (11)0.0158 (11)−0.0019 (9)−0.0073 (9)−0.0013 (9)
C220.0260 (12)0.0124 (11)0.0108 (10)0.0019 (9)−0.0016 (9)−0.0003 (8)
C230.0191 (11)0.0129 (10)0.0140 (11)−0.0006 (8)−0.0018 (8)0.0014 (8)

Geometric parameters (Å, °)

Mn1—O11.8879 (15)C7—H70.9500
Mn1—O21.9113 (15)C8—C91.515 (3)
Mn1—N21.9946 (18)C8—H8A0.9900
Mn1—N11.9980 (18)C8—H8B0.9900
Mn1—O32.1513 (15)C9—H9A0.9900
Mn1—O72.3250 (16)C9—H9B0.9900
O1—C11.324 (3)C10—C111.434 (3)
O2—C161.331 (3)C10—H100.9500
O3—C171.269 (3)C11—C121.414 (3)
O4—C171.244 (3)C11—C161.426 (3)
O5—N31.220 (3)C12—C131.373 (3)
O6—N31.236 (3)C12—H120.9500
O7—H1W0.8400C13—C141.399 (3)
O7—H2W0.7659C13—H130.9500
N1—C71.288 (3)C14—C151.381 (3)
N1—C81.471 (3)C14—H140.9500
N2—C101.284 (3)C15—C161.400 (3)
N2—C91.472 (3)C15—H150.9500
N3—C221.472 (3)C17—C181.515 (3)
C1—C21.408 (3)C18—C191.389 (3)
C1—C61.421 (3)C18—C231.393 (3)
C2—C31.383 (3)C19—C201.394 (3)
C2—H20.9500C19—H190.9500
C3—C41.397 (4)C20—C211.383 (3)
C3—H30.9500C20—H200.9500
C4—C51.374 (3)C21—C221.378 (3)
C4—H40.9500C21—H210.9500
C5—C61.411 (3)C22—C231.389 (3)
C5—H50.9500C23—H230.9500
C6—C71.439 (3)
O1—Mn1—O297.25 (7)C9—C8—H8A110.5
O1—Mn1—N2171.26 (7)N1—C8—H8B110.5
O2—Mn1—N291.15 (7)C9—C8—H8B110.5
O1—Mn1—N190.20 (7)H8A—C8—H8B108.7
O2—Mn1—N1172.54 (7)N2—C9—C8107.21 (17)
N2—Mn1—N181.42 (7)N2—C9—H9A110.3
O1—Mn1—O391.05 (6)C8—C9—H9A110.3
O2—Mn1—O389.70 (6)N2—C9—H9B110.3
N2—Mn1—O391.40 (7)C8—C9—H9B110.3
N1—Mn1—O389.75 (7)H9A—C9—H9B108.5
O1—Mn1—O790.07 (6)N2—C10—C11125.7 (2)
O2—Mn1—O791.54 (6)N2—C10—H10117.2
N2—Mn1—O787.29 (6)C11—C10—H10117.2
N1—Mn1—O788.85 (6)C12—C11—C16119.4 (2)
O3—Mn1—O7178.21 (6)C12—C11—C10117.3 (2)
C1—O1—Mn1125.44 (14)C16—C11—C10123.1 (2)
C16—O2—Mn1128.63 (14)C13—C12—C11121.5 (2)
C17—O3—Mn1139.29 (14)C13—C12—H12119.2
Mn1—O7—H1W109.5C11—C12—H12119.2
Mn1—O7—H2W133.3C12—C13—C14118.7 (2)
H1W—O7—H2W116.8C12—C13—H13120.6
C7—N1—C8121.31 (19)C14—C13—H13120.6
C7—N1—Mn1124.86 (15)C15—C14—C13121.2 (2)
C8—N1—Mn1113.44 (13)C15—C14—H14119.4
C10—N2—C9120.50 (19)C13—C14—H14119.4
C10—N2—Mn1126.20 (16)C14—C15—C16121.3 (2)
C9—N2—Mn1113.27 (13)C14—C15—H15119.3
O5—N3—O6123.7 (2)C16—C15—H15119.3
O5—N3—C22118.83 (19)O2—C16—C15118.9 (2)
O6—N3—C22117.5 (2)O2—C16—C11123.2 (2)
O1—C1—C2118.6 (2)C15—C16—C11117.8 (2)
O1—C1—C6123.5 (2)O4—C17—O3125.8 (2)
C2—C1—C6117.9 (2)O4—C17—C18118.00 (19)
C3—C2—C1120.9 (2)O3—C17—C18116.17 (19)
C3—C2—H2119.6C19—C18—C23119.6 (2)
C1—C2—H2119.6C19—C18—C17121.01 (19)
C2—C3—C4121.1 (2)C23—C18—C17119.3 (2)
C2—C3—H3119.4C18—C19—C20120.8 (2)
C4—C3—H3119.4C18—C19—H19119.6
C5—C4—C3119.2 (2)C20—C19—H19119.6
C5—C4—H4120.4C21—C20—C19120.3 (2)
C3—C4—H4120.4C21—C20—H20119.9
C4—C5—C6121.0 (2)C19—C20—H20119.9
C4—C5—H5119.5C22—C21—C20118.1 (2)
C6—C5—H5119.5C22—C21—H21121.0
C5—C6—C1119.9 (2)C20—C21—H21121.0
C5—C6—C7117.7 (2)C21—C22—C23123.2 (2)
C1—C6—C7122.4 (2)C21—C22—N3119.2 (2)
N1—C7—C6124.4 (2)C23—C22—N3117.6 (2)
N1—C7—H7117.8C22—C23—C18118.1 (2)
C6—C7—H7117.8C22—C23—H23121.0
N1—C8—C9106.32 (17)C18—C23—H23121.0
N1—C8—H8A110.5
O2—Mn1—O1—C1−146.55 (16)C2—C1—C6—C7178.0 (2)
N2—Mn1—O1—C149.5 (5)C8—N1—C7—C6−179.76 (19)
N1—Mn1—O1—C133.04 (17)Mn1—N1—C7—C67.9 (3)
O3—Mn1—O1—C1−56.72 (16)C5—C6—C7—N1−171.5 (2)
O7—Mn1—O1—C1121.89 (16)C1—C6—C7—N110.2 (3)
O1—Mn1—O2—C16−161.93 (17)C7—N1—C8—C9−136.1 (2)
N2—Mn1—O2—C1615.66 (17)Mn1—N1—C8—C937.1 (2)
N1—Mn1—O2—C1621.3 (6)C10—N2—C9—C8−145.69 (19)
O3—Mn1—O2—C16107.05 (17)Mn1—N2—C9—C835.9 (2)
O7—Mn1—O2—C16−71.66 (17)N1—C8—C9—N2−45.6 (2)
O1—Mn1—O3—C1778.3 (2)C9—N2—C10—C11−174.05 (19)
O2—Mn1—O3—C17175.5 (2)Mn1—N2—C10—C114.1 (3)
N2—Mn1—O3—C17−93.3 (2)N2—C10—C11—C12180.0 (2)
N1—Mn1—O3—C17−11.9 (2)N2—C10—C11—C165.2 (3)
O7—Mn1—O3—C17−50.6 (19)C16—C11—C12—C13−1.6 (3)
O1—Mn1—N1—C7−24.13 (18)C10—C11—C12—C13−176.7 (2)
O2—Mn1—N1—C7152.7 (5)C11—C12—C13—C141.2 (3)
N2—Mn1—N1—C7158.36 (18)C12—C13—C14—C150.2 (3)
O3—Mn1—N1—C766.92 (18)C13—C14—C15—C16−1.0 (3)
O7—Mn1—N1—C7−114.20 (18)Mn1—O2—C16—C15171.22 (14)
O1—Mn1—N1—C8162.98 (14)Mn1—O2—C16—C11−11.9 (3)
O2—Mn1—N1—C8−20.2 (6)C14—C15—C16—O2177.58 (19)
N2—Mn1—N1—C8−14.53 (14)C14—C15—C16—C110.5 (3)
O3—Mn1—N1—C8−105.98 (14)C12—C11—C16—O2−176.14 (19)
O7—Mn1—N1—C872.91 (14)C10—C11—C16—O2−1.4 (3)
O1—Mn1—N2—C10152.3 (4)C12—C11—C16—C150.8 (3)
O2—Mn1—N2—C10−11.72 (18)C10—C11—C16—C15175.50 (19)
N1—Mn1—N2—C10169.01 (19)Mn1—O3—C17—O477.7 (3)
O3—Mn1—N2—C10−101.45 (18)Mn1—O3—C17—C18−104.5 (2)
O7—Mn1—N2—C1079.77 (18)O4—C17—C18—C19165.9 (2)
O1—Mn1—N2—C9−29.4 (5)O3—C17—C18—C19−12.1 (3)
O2—Mn1—N2—C9166.56 (14)O4—C17—C18—C23−11.5 (3)
N1—Mn1—N2—C9−12.70 (14)O3—C17—C18—C23170.54 (19)
O3—Mn1—N2—C976.84 (14)C23—C18—C19—C200.8 (3)
O7—Mn1—N2—C9−101.95 (14)C17—C18—C19—C20−176.6 (2)
Mn1—O1—C1—C2154.51 (16)C18—C19—C20—C21−1.2 (3)
Mn1—O1—C1—C6−26.4 (3)C19—C20—C21—C220.4 (3)
O1—C1—C2—C3179.8 (2)C20—C21—C22—C230.7 (3)
C6—C1—C2—C30.6 (3)C20—C21—C22—N3178.6 (2)
C1—C2—C3—C4−0.5 (4)O5—N3—C22—C21−165.6 (2)
C2—C3—C4—C50.1 (4)O6—N3—C22—C2114.7 (3)
C3—C4—C5—C60.1 (4)O5—N3—C22—C2312.4 (3)
C4—C5—C6—C10.0 (3)O6—N3—C22—C23−167.3 (2)
C4—C5—C6—C7−178.4 (2)C21—C22—C23—C18−1.0 (3)
O1—C1—C6—C5−179.4 (2)N3—C22—C23—C18−178.95 (18)
C2—C1—C6—C5−0.3 (3)C19—C18—C23—C220.3 (3)
O1—C1—C6—C7−1.1 (3)C17—C18—C23—C22177.69 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H2W···O2i0.772.313.074 (2)172
O7—H1W···O4ii0.841.892.710 (2)166

Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2096).

References

  • Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.
  • Bruker (2004). APEX2, SAINT-Plus and XSHELL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Christou, G. (1989). Acc. Chem. Res.22, 328–335.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Pecoraro, V. L. & Hsieh, W.-Y. (2000). The Use of Model Complexes to Elucidate the Structure and Function of Manganese Redox Enzymes, in Metal Ions in Biological Systems, edited by Astrid Sigel & Helmut Sigel, Vol. 37, ch. 14, p. 429. Basel: Marcel-Dekker Inc. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yocum, C. F. & Pecoraro, V. L. (2004). Curr. Opin. Chem. Biol.3, 182–187. [PubMed]
  • Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720. [PubMed]
  • Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Sänger, W. & Orth, P. (2001). Nature (London), 409, 739–743. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography