PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m986.
Published online 2008 July 5. doi:  10.1107/S1600536808019843
PMCID: PMC2961914

Triaqua­(3-carb­oxy-5-sulfonatobenzoato-κO 1)(1,10-phenanthroline-κ2 N,N′)cobalt(II) monohydrate

Abstract

In the title compound, [Co(C8H4O7S)(C12H8N2)(H2O)3]·H2O, the CoII cation is coordinated by one sulfoisophthalate dianion, one bidentate phenathroline (phen) mol­ecule and three water mol­ecules in a distorted cis-CoN2O4 octa­hedral geometry. In the crystal structure, aromatic π–π stacking occurs [centroid–centroid distances 3.7630 (14) and 3.7269 (15) Å], as well as an extensive O—H(...)O and C—H(...)O hydrogen-bonding network

Related literature

For related structures, see: Li et al. (2005 [triangle]); Liu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m986-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H4O7S)(C12H8N2)(H2O)3]·H2O
  • M r = 555.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m986-efi1.jpg
  • a = 10.9968 (13) Å
  • b = 13.9358 (18) Å
  • c = 15.870 (2) Å
  • β = 109.645 (14)°
  • V = 2290.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 295 (2) K
  • 0.36 × 0.24 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.740, T max = 0.835
  • 25103 measured reflections
  • 4490 independent reflections
  • 3416 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.095
  • S = 1.06
  • 4490 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019843/hb2753sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019843/hb2753Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our ongoing studies of aromatic π–π stacking in coordination complexes (Li et al., 2005; Liu et al., 2006), the title CoII compound, (I), incorporating the sulfoisophthalate ligand has been prepared and its crystal structure is reported here (Fig. 1).

The CoII cation in (I) is coordinated by one sulfoisophthalate dianion, one bidentate phenathroline (phen) molecule and three water molecules in a distorted CoN2O4 octahedral geometry (Table 1). Among the two carboxyl groups of the sulfoisophthalate, the C13-carboxyl group is deprotonated and the difference between C13—O1 and C13—O2 bond distances is small whereas the C20-carboxyl group is not deprotonated and the difference between the C20—O3 and C20—O4 bond distances is larger (Table 1).

This is in agreement with those found in related structures, e.g. catena-((µ3-5-carboxy-3-sulfonatobenzoato)aqua(phenanthroline)lead(II) monohydrate (Li et al., 2005) and bis(µ2-aqua)hexaaquabis(5-sulfoisophthalato)dicadmium(II) (Liu et al., 2006). The C13-carboxyl group is hydrogen bonded (as an acceptor) to the coordinated water molecule while the C20-carboxylo group is hydrogen bonded (as a donor) to the uncoordinated water molecule (Fig. 1). An extensive O—H···O and C—H···O hydrogen bonding network helps to consolidate the packing (Table 2).

A partially overlapped arrangement is observed between nearly parallel phen ring system and the benzene ring of the sulfoisophthalate dianion from an adjacent complex (Fig. 2). The centroid-to-centroid distances of 3.7630 (14) Å between the N1-pyridine and C16i-benzene rings and 3.7269 (15) Å between the C6-benzene and C16i-benzene rings [symmetry code: (i) 1 - x, -y, 1 - z] indicate the existence of π–π stacking between phen and sulfoisophthalate of the adjacent molecule.

Experimental

A water–ethanol solution (15 ml, 2:1 v/v) containing monosodium 5-sulfoisophthalate (0.27 g, 1 mmol), sodium carbonate (0.053 g, 0.5 mmol), 1,10-phenanthroline (0.10 g, 0.5 mmol) and cobalt nitrate hexahydrate (0.29 g, 1 mmol) was refluxed for 3 h. After cooling to room temperature the solution was filtered. Red prisms of (I) were obtained from the filtrate after one week.

Refinement

The carboxyl H and water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with 40% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.
Fig. 2.
A diagram showing π–π stacking between aromatic rings [symmetry code: (i) 1 - x, -y, 1 - z].

Crystal data

[Co(C8H4O7S)(C12H8N2)(H2O)3]·H2OF000 = 1140
Mr = 555.37Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6846 reflections
a = 10.9968 (13) Åθ = 2.0–25.0º
b = 13.9358 (18) ŵ = 0.91 mm1
c = 15.870 (2) ÅT = 295 (2) K
β = 109.645 (14)ºPrism, red
V = 2290.4 (5) Å30.36 × 0.24 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer4490 independent reflections
Radiation source: fine-focus sealed tube3416 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.051
Detector resolution: 10.0 pixels mm-1θmax = 26.0º
T = 295(2) Kθmin = 2.0º
ω scansh = −13→13
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −17→16
Tmin = 0.740, Tmax = 0.835l = −18→19
25103 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.095  w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1783P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4490 reflectionsΔρmax = 0.40 e Å3
316 parametersΔρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co0.32537 (3)0.13651 (2)0.35952 (2)0.03134 (12)
S0.05040 (5)0.06815 (4)0.78134 (4)0.03161 (16)
N10.52786 (18)0.12769 (13)0.38882 (13)0.0321 (4)
N20.3431 (2)0.14723 (15)0.22955 (13)0.0387 (5)
O10.32643 (15)0.12435 (12)0.48995 (11)0.0367 (4)
O20.11757 (17)0.14036 (17)0.47225 (13)0.0674 (7)
O30.63866 (15)0.09338 (13)0.80484 (11)0.0418 (4)
O40.55844 (17)0.09929 (17)0.91585 (12)0.0585 (6)
H4A0.63920.09660.95950.088*
O50.30048 (15)−0.01239 (12)0.33733 (11)0.0386 (4)
H5A0.2252−0.03450.32410.058*
H5B0.3245−0.03520.29500.058*
O60.35517 (15)0.28948 (12)0.38099 (11)0.0388 (4)
H6A0.29230.31080.34200.058*
H6B0.41970.31110.36940.058*
O70.12326 (15)0.16385 (12)0.31242 (11)0.0405 (4)
H7A0.10990.15880.36290.061*
H7B0.07420.12780.27340.061*
O110.05105 (16)−0.03233 (12)0.80684 (11)0.0435 (4)
O120.07483 (16)0.13193 (13)0.85730 (12)0.0444 (5)
O13−0.06484 (15)0.09361 (14)0.70756 (12)0.0465 (5)
O1W0.7986 (2)0.1114 (2)1.02278 (15)0.0893 (9)
H1A0.85960.13800.99850.134*
H1B0.85760.07941.07410.134*
C10.6184 (2)0.11688 (18)0.46861 (17)0.0395 (6)
H10.59290.10650.51810.047*
C20.7504 (3)0.12047 (19)0.4809 (2)0.0488 (7)
H20.81080.11210.53770.059*
C30.7901 (2)0.13620 (18)0.4096 (2)0.0482 (7)
H30.87770.13960.41750.058*
C40.6977 (2)0.14729 (16)0.32399 (19)0.0393 (6)
C50.7295 (3)0.16124 (19)0.2445 (2)0.0497 (7)
H50.81560.16610.24860.060*
C60.6364 (3)0.16742 (19)0.1640 (2)0.0527 (8)
H60.65970.17610.11340.063*
C70.5023 (3)0.16096 (18)0.15414 (18)0.0446 (7)
C80.4010 (3)0.1641 (2)0.07230 (19)0.0596 (8)
H80.41910.17080.01940.071*
C90.2766 (3)0.1574 (2)0.0696 (2)0.0637 (9)
H90.20940.15780.01510.076*
C100.2509 (3)0.1500 (2)0.14981 (19)0.0537 (8)
H100.16530.14680.14730.064*
C110.4678 (2)0.15056 (17)0.23164 (17)0.0349 (6)
C120.5665 (2)0.14201 (16)0.31698 (16)0.0323 (5)
C130.2328 (2)0.12619 (17)0.51846 (16)0.0348 (6)
C140.2602 (2)0.10967 (16)0.61750 (15)0.0305 (5)
C150.1576 (2)0.09694 (17)0.64978 (16)0.0320 (5)
H150.07310.09710.61020.038*
C160.1814 (2)0.08409 (16)0.74032 (15)0.0293 (5)
C170.3073 (2)0.08407 (16)0.80040 (16)0.0317 (5)
H170.32260.07590.86130.038*
C180.4098 (2)0.09629 (17)0.76915 (15)0.0312 (5)
C190.3862 (2)0.10878 (17)0.67763 (16)0.0313 (5)
H190.45510.11650.65670.038*
C200.5461 (2)0.09713 (18)0.83179 (16)0.0351 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.02507 (18)0.0439 (2)0.0262 (2)−0.00116 (13)0.01016 (14)0.00125 (14)
S0.0246 (3)0.0425 (3)0.0300 (3)−0.0027 (2)0.0122 (3)−0.0003 (3)
N10.0287 (10)0.0399 (11)0.0287 (11)0.0004 (8)0.0110 (9)0.0012 (9)
N20.0379 (12)0.0501 (13)0.0271 (12)0.0012 (10)0.0095 (10)0.0028 (9)
O10.0289 (9)0.0581 (11)0.0255 (9)0.0008 (7)0.0122 (7)0.0025 (8)
O20.0307 (10)0.141 (2)0.0324 (11)0.0098 (11)0.0125 (9)0.0141 (12)
O30.0264 (9)0.0628 (11)0.0378 (10)−0.0036 (8)0.0130 (8)−0.0111 (9)
O40.0326 (10)0.1136 (17)0.0280 (10)−0.0016 (11)0.0086 (8)−0.0058 (11)
O50.0324 (9)0.0489 (10)0.0370 (10)−0.0058 (7)0.0149 (8)−0.0054 (8)
O60.0271 (8)0.0478 (10)0.0438 (10)0.0009 (7)0.0149 (8)0.0058 (8)
O70.0306 (9)0.0577 (11)0.0318 (10)−0.0018 (8)0.0085 (8)−0.0016 (8)
O110.0412 (10)0.0457 (10)0.0476 (11)−0.0046 (8)0.0205 (9)0.0054 (9)
O120.0374 (10)0.0588 (12)0.0421 (11)−0.0031 (8)0.0200 (9)−0.0150 (9)
O130.0248 (9)0.0721 (13)0.0401 (11)−0.0009 (8)0.0077 (8)0.0100 (9)
O1W0.0410 (12)0.174 (3)0.0463 (14)−0.0109 (14)0.0059 (10)0.0314 (15)
C10.0319 (13)0.0495 (15)0.0355 (15)0.0006 (11)0.0093 (12)0.0020 (12)
C20.0343 (14)0.0544 (17)0.0490 (18)0.0024 (12)0.0025 (13)0.0004 (14)
C30.0264 (13)0.0477 (16)0.071 (2)0.0014 (11)0.0164 (14)−0.0012 (14)
C40.0380 (14)0.0310 (13)0.0588 (18)0.0015 (10)0.0291 (14)0.0002 (12)
C50.0503 (17)0.0424 (16)0.072 (2)0.0004 (13)0.0416 (17)−0.0008 (14)
C60.077 (2)0.0411 (15)0.064 (2)0.0034 (14)0.0561 (19)0.0034 (14)
C70.0640 (19)0.0398 (15)0.0406 (16)0.0052 (13)0.0316 (15)0.0040 (12)
C80.089 (3)0.063 (2)0.0345 (17)0.0117 (18)0.0306 (17)0.0098 (14)
C90.078 (2)0.078 (2)0.0265 (16)0.0079 (18)0.0057 (16)0.0064 (15)
C100.0482 (17)0.072 (2)0.0343 (16)0.0018 (15)0.0059 (14)0.0050 (14)
C110.0438 (15)0.0335 (13)0.0340 (14)0.0020 (10)0.0217 (12)0.0021 (10)
C120.0350 (13)0.0287 (12)0.0389 (15)−0.0009 (10)0.0199 (12)−0.0017 (10)
C130.0285 (13)0.0493 (15)0.0285 (13)−0.0020 (11)0.0123 (11)0.0011 (11)
C140.0306 (12)0.0347 (12)0.0286 (13)−0.0025 (10)0.0132 (11)−0.0027 (10)
C150.0261 (12)0.0389 (13)0.0317 (13)−0.0010 (10)0.0108 (10)−0.0026 (11)
C160.0277 (12)0.0329 (12)0.0305 (13)−0.0019 (9)0.0139 (10)−0.0022 (10)
C170.0305 (12)0.0397 (14)0.0276 (13)−0.0024 (10)0.0134 (11)−0.0007 (10)
C180.0287 (12)0.0345 (12)0.0298 (13)−0.0038 (10)0.0089 (10)−0.0022 (10)
C190.0270 (12)0.0401 (13)0.0320 (13)−0.0019 (10)0.0166 (10)−0.0016 (11)
C200.0269 (12)0.0452 (14)0.0328 (14)−0.0028 (11)0.0096 (11)−0.0012 (11)

Geometric parameters (Å, °)

Co—O12.0730 (16)C2—C31.361 (4)
Co—O52.1070 (17)C2—H20.9300
Co—O62.1663 (17)C3—C41.405 (4)
Co—O72.1277 (16)C3—H30.9300
Co—N12.1198 (19)C4—C121.411 (3)
Co—N22.141 (2)C4—C51.431 (4)
S—O111.4569 (18)C5—C61.345 (4)
S—O121.4482 (18)C5—H50.9300
S—O131.4509 (17)C6—C71.432 (4)
S—C161.783 (2)C6—H60.9300
N1—C11.330 (3)C7—C81.399 (4)
N1—C121.359 (3)C7—C111.411 (3)
N2—C101.330 (3)C8—C91.357 (4)
N2—C111.361 (3)C8—H80.9300
O1—C131.257 (3)C9—C101.398 (4)
O2—C131.248 (3)C9—H90.9300
O3—C201.231 (3)C10—H100.9300
O4—C201.295 (3)C11—C121.428 (3)
O4—H4A0.9257C13—C141.515 (3)
O5—H5A0.8416C14—C191.393 (3)
O5—H5B0.8608C14—C151.399 (3)
O6—H6A0.8129C15—C161.383 (3)
O6—H6B0.8463C15—H150.9300
O7—H7A0.8645C16—C171.392 (3)
O7—H7B0.8385C17—C181.386 (3)
O1W—H1A0.9530C17—H170.9300
O1W—H1B0.9630C18—C191.398 (3)
C1—C21.399 (4)C18—C201.495 (3)
C1—H10.9300C19—H190.9300
O1—Co—O592.48 (6)C12—C4—C5118.9 (3)
O1—Co—N197.09 (7)C6—C5—C4120.8 (3)
O5—Co—N192.72 (7)C6—C5—H5119.6
O1—Co—O791.14 (6)C4—C5—H5119.6
O5—Co—O793.21 (6)C5—C6—C7121.8 (3)
N1—Co—O7169.64 (7)C5—C6—H6119.1
O1—Co—N2174.74 (7)C7—C6—H6119.1
O5—Co—N287.51 (7)C8—C7—C11116.7 (3)
N1—Co—N277.66 (8)C8—C7—C6124.7 (3)
O7—Co—N294.11 (7)C11—C7—C6118.7 (3)
O1—Co—O688.49 (6)C9—C8—C7120.5 (3)
O5—Co—O6178.49 (6)C9—C8—H8119.8
N1—Co—O686.00 (6)C7—C8—H8119.8
O7—Co—O687.93 (6)C8—C9—C10119.1 (3)
N2—Co—O691.43 (7)C8—C9—H9120.4
O12—S—O13112.88 (11)C10—C9—H9120.4
O12—S—O11112.12 (11)N2—C10—C9123.1 (3)
O13—S—O11112.37 (11)N2—C10—H10118.5
O12—S—C16106.31 (11)C9—C10—H10118.5
O13—S—C16105.58 (11)N2—C11—C7123.1 (2)
O11—S—C16106.98 (10)N2—C11—C12117.3 (2)
C1—N1—C12118.0 (2)C7—C11—C12119.6 (2)
C1—N1—Co127.59 (17)N1—C12—C4122.8 (2)
C12—N1—Co114.17 (15)N1—C12—C11117.1 (2)
C10—N2—C11117.5 (2)C4—C12—C11120.1 (2)
C10—N2—Co129.16 (19)O2—C13—O1125.8 (2)
C11—N2—Co113.33 (16)O2—C13—C14116.3 (2)
C13—O1—Co128.88 (16)O1—C13—C14118.0 (2)
C20—O4—H4A120.8C19—C14—C15119.1 (2)
Co—O5—H5A117.7C19—C14—C13121.1 (2)
Co—O5—H5B116.0C15—C14—C13119.7 (2)
H5A—O5—H5B101.8C16—C15—C14120.2 (2)
Co—O6—H6A101.2C16—C15—H15119.9
Co—O6—H6B114.2C14—C15—H15119.9
H6A—O6—H6B105.4C15—C16—C17120.6 (2)
Co—O7—H7A98.2C15—C16—S120.11 (17)
Co—O7—H7B119.3C17—C16—S119.32 (17)
H7A—O7—H7B111.6C18—C17—C16119.7 (2)
H1A—O1W—H1B99.1C18—C17—H17120.1
N1—C1—C2122.5 (2)C16—C17—H17120.1
N1—C1—H1118.7C17—C18—C19119.9 (2)
C2—C1—H1118.7C17—C18—C20121.2 (2)
C3—C2—C1119.8 (3)C19—C18—C20119.0 (2)
C3—C2—H2120.1C14—C19—C18120.5 (2)
C1—C2—H2120.1C14—C19—H19119.8
C2—C3—C4119.5 (2)C18—C19—H19119.8
C2—C3—H3120.3O3—C20—O4123.1 (2)
C4—C3—H3120.3O3—C20—C18122.0 (2)
C3—C4—C12117.3 (2)O4—C20—C18114.8 (2)
C3—C4—C5123.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O6i0.952.112.881 (3)137
O1W—H1B···O11ii0.961.932.873 (3)165
O4—H4A···O1W0.931.712.621 (3)166
O5—H5A···O13iii0.841.862.695 (3)175
O5—H5B···O3iv0.861.942.798 (2)174
O6—H6A···O3v0.812.082.803 (2)149
O6—H6B···O12vi0.851.952.790 (3)173
O7—H7A···O20.861.732.579 (3)168
O7—H7B···O11iii0.842.032.859 (2)172
C1—H1···O5iv0.932.563.249 (3)131
C2—H2···O13vii0.932.593.506 (4)167
C3—H3···O2vii0.932.483.399 (3)168
C6—H6···O1Wviii0.932.593.391 (4)145
C9—H9···O12viii0.932.473.373 (4)164

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y, −z+2; (iii) −x, −y, −z+1; (iv) −x+1, −y, −z+1; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z−1/2; (vii) x+1, y, z; (viii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2753).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, X.-H., Xiao, H.-P., Zhang, Q. & Hu, M.-L. (2005). Acta Cryst. C61, m130–m132. [PubMed]
  • Liu, Q.-Y., Wang, Y.-L. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 4843–4851.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography