PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m982.
Published online 2008 July 5. doi:  10.1107/S160053680801948X
PMCID: PMC2961911

Dichlorido[1-(1,10-phenanthrolin-2-yl)-2-pyridone]copper(II)

Abstract

In the title mononuclear complex, [CuCl2(C17H11N3O)], the CuII ion is in a distorted square-pyramidal coordination environment. The crystal structure is stabilized by various π–π stacking inter­actions in which the benzene ring, a pyridine ring and the five-membered CuN2C2 ring are involved. The centroid–centroid distances range from 3.5631 (15) to 3.5666 (16) Å.

Related literature

For a related structure, see: Liu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m982-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C17H11N3O)]
  • M r = 407.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m982-efi1.jpg
  • a = 7.3653 (12) Å
  • b = 13.811 (2) Å
  • c = 14.994 (2) Å
  • β = 98.416 (2)°
  • V = 1508.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.81 mm−1
  • T = 298 (2) K
  • 0.38 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.546, T max = 0.812
  • 8630 measured reflections
  • 3265 independent reflections
  • 2706 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.102
  • S = 1.11
  • 3265 reflections
  • 217 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801948X/lh2647sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801948X/lh2647Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and the complex with 1-(1,10-phenanthrolin-2-yl)-2-pyridone as bridging ligand and termial ligand has already been reported (Liu et al., 2008). Herein the crystal structure of the title complex with 1-(1,10-phenanthrolin-2-yl)-2-pyridone as terminal ligand is reported.

Fig. 1 shows the moleculuar structure, revealing that the atom CuII ion is in a distorted square-pyramidal coordination environment, with atom Cl2 in the apical position. There are π–π stacking interactions involving symmetry-related complex molecules, the relevant distances being Cg1···Cg2i = 3.5631 (15) Å and Cg1···Cg2iperp = 3.355 Å and α = 4.35°; Cg2···Cg3ii = 3.5568 (16) Å and Cg2···Cg3iiperp = 3.450 Å and α = 1.81°; Cg2···Cg2i = 3.5666 (16) Å and Cg2···Cg2iperp = 3.407 Å and α = 0.00° [symmetry codes: (i) 1-x, 2-x, 1-x; (ii) -x, 2-y, 1-x; Cg1, Cg2 and Cg3 are the centroids of the Cu1/N1/N2/C8/C14 ring, C8/C9/C11-C14 ring amd N1/C13-C17 ring, respectively; Cgi···Cgjperp is the perpendicular distance from ring Cgi to ring Cgj; α is the dihedral angle between ring plane Cgi and ring plane Cgj]. These π–π stacking interactions help stabilize the crystal structure.

Experimental

A 10 ml methanol solution of 1-(1,10-phenanthrolin-2-yl)-2-pyridone (0.1648 g, 0.603 mmol) was added into a 10 ml methanol solution containing CuCl2 (0.1025 g, 0.601 mmol) and the mixture was stirred for a few minutes. The green single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex with atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level

Crystal data

[CuCl2(C17H11N3O)]F000 = 820
Mr = 407.73Dx = 1.795 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3380 reflections
a = 7.3653 (12) Åθ = 2.8–28.1º
b = 13.811 (2) ŵ = 1.81 mm1
c = 14.994 (2) ÅT = 298 (2) K
β = 98.416 (2)ºBlock, green
V = 1508.8 (4) Å30.38 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3265 independent reflections
Radiation source: fine-focus sealed tube2706 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 298(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.546, Tmax = 0.812k = −16→17
8630 measured reflectionsl = −16→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102  w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1919P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
3265 reflectionsΔρmax = 0.64 e Å3
217 parametersΔρmin = −0.66 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3230 (4)1.05721 (18)0.15163 (16)0.0310 (5)
C20.3160 (4)1.0755 (2)0.05804 (17)0.0378 (6)
H20.35501.13540.03970.045*
C30.2546 (4)1.0089 (2)−0.00543 (17)0.0397 (6)
H30.25181.0236−0.06620.048*
C40.1951 (4)0.9179 (2)0.01991 (18)0.0405 (6)
H40.14980.8725−0.02360.049*
C50.2045 (4)0.89731 (19)0.10802 (18)0.0371 (6)
H50.16380.83730.12520.045*
C60.2990 (3)0.93054 (17)0.26475 (16)0.0291 (5)
C70.3620 (4)0.83639 (18)0.28418 (18)0.0352 (6)
H70.39090.79630.23850.042*
C80.2832 (3)0.95921 (16)0.41397 (15)0.0254 (5)
C90.3410 (3)0.86537 (16)0.43983 (17)0.0289 (5)
C100.3804 (4)0.80403 (18)0.37072 (19)0.0358 (6)
H100.41940.74090.38410.043*
C110.3575 (4)0.83935 (19)0.53288 (18)0.0354 (6)
H110.40020.77800.55100.042*
C120.3121 (4)0.9024 (2)0.59522 (17)0.0361 (6)
H120.32330.88350.65530.043*
C130.2472 (3)0.99763 (18)0.57023 (16)0.0308 (5)
C140.2373 (3)1.02632 (17)0.47986 (15)0.0258 (5)
C150.1357 (4)1.17865 (19)0.50840 (17)0.0339 (6)
H150.09871.24020.48820.041*
C160.1378 (4)1.1564 (2)0.59914 (18)0.0389 (6)
H160.10071.20220.63820.047*
C170.1950 (4)1.06686 (19)0.63025 (17)0.0362 (6)
H170.19931.05180.69100.043*
Cl10.25172 (13)1.29316 (5)0.33181 (5)0.0508 (2)
Cl2−0.07342 (10)1.12202 (5)0.21487 (5)0.04360 (19)
Cu10.20539 (5)1.13365 (2)0.316143 (19)0.03221 (13)
N10.1845 (3)1.11538 (14)0.44938 (13)0.0282 (4)
N20.2618 (3)0.99094 (14)0.32770 (12)0.0262 (4)
N30.2737 (3)0.96350 (15)0.17385 (13)0.0299 (5)
O10.3712 (3)1.11913 (12)0.21153 (13)0.0375 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0304 (14)0.0318 (13)0.0311 (13)0.0018 (10)0.0054 (10)−0.0030 (11)
C20.0418 (17)0.0382 (15)0.0345 (14)−0.0002 (12)0.0091 (12)0.0034 (11)
C30.0423 (17)0.0498 (16)0.0270 (13)0.0047 (13)0.0049 (11)−0.0005 (12)
C40.0477 (18)0.0415 (15)0.0310 (14)−0.0004 (13)0.0012 (12)−0.0108 (11)
C50.0443 (17)0.0306 (13)0.0353 (14)−0.0014 (12)0.0018 (12)−0.0057 (11)
C60.0308 (14)0.0287 (12)0.0279 (12)−0.0011 (10)0.0043 (10)−0.0021 (10)
C70.0404 (16)0.0271 (12)0.0387 (14)0.0034 (11)0.0072 (12)−0.0045 (11)
C80.0208 (13)0.0263 (11)0.0284 (12)−0.0017 (9)0.0009 (9)0.0023 (9)
C90.0239 (14)0.0275 (12)0.0348 (13)−0.0011 (9)0.0025 (10)0.0048 (9)
C100.0350 (16)0.0263 (13)0.0448 (15)0.0032 (11)0.0009 (11)0.0033 (11)
C110.0306 (15)0.0332 (13)0.0409 (15)−0.0015 (11)0.0002 (11)0.0134 (11)
C120.0358 (16)0.0427 (14)0.0287 (13)−0.0075 (12)0.0011 (11)0.0111 (11)
C130.0242 (14)0.0394 (13)0.0287 (12)−0.0097 (11)0.0030 (10)0.0034 (11)
C140.0199 (12)0.0300 (12)0.0266 (12)−0.0030 (9)0.0007 (9)0.0013 (9)
C150.0366 (15)0.0319 (13)0.0330 (13)0.0003 (11)0.0041 (11)−0.0058 (11)
C160.0396 (17)0.0454 (15)0.0328 (14)−0.0039 (12)0.0093 (12)−0.0096 (12)
C170.0349 (16)0.0472 (16)0.0266 (13)−0.0104 (12)0.0050 (11)−0.0015 (11)
Cl10.0949 (7)0.0249 (3)0.0346 (4)0.0034 (3)0.0158 (4)0.0007 (3)
Cl20.0389 (4)0.0562 (4)0.0337 (4)0.0037 (3)−0.0013 (3)0.0073 (3)
Cu10.0477 (3)0.02408 (19)0.02382 (19)0.00415 (13)0.00175 (14)0.00028 (11)
N10.0279 (12)0.0295 (10)0.0264 (10)−0.0004 (8)0.0018 (8)−0.0009 (8)
N20.0284 (11)0.0228 (10)0.0271 (10)0.0009 (8)0.0033 (8)−0.0002 (8)
N30.0362 (13)0.0280 (11)0.0263 (10)0.0009 (9)0.0066 (9)−0.0024 (8)
O10.0475 (12)0.0328 (10)0.0335 (10)−0.0075 (8)0.0104 (8)−0.0047 (8)

Geometric parameters (Å, °)

C1—O11.253 (3)C9—C111.429 (4)
C1—N31.397 (3)C10—H100.9300
C1—C21.419 (3)C11—C121.355 (4)
C2—C31.353 (4)C11—H110.9300
C2—H20.9300C12—C131.430 (4)
C3—C41.402 (4)C12—H120.9300
C3—H30.9300C13—C141.403 (3)
C4—C51.343 (4)C13—C171.405 (4)
C4—H40.9300C14—N11.349 (3)
C5—N31.386 (3)C15—N11.330 (3)
C5—H50.9300C15—C161.393 (4)
C6—N21.318 (3)C15—H150.9300
C6—C71.397 (3)C16—C171.366 (4)
C6—N31.423 (3)C16—H160.9300
C7—C101.360 (4)C17—H170.9300
C7—H70.9300Cl1—Cu12.2362 (8)
C8—N21.353 (3)Cl2—Cu12.3740 (8)
C8—C91.401 (3)Cu1—N22.0165 (19)
C8—C141.431 (3)Cu1—N12.042 (2)
C9—C101.401 (4)Cu1—O12.1337 (18)
O1—C1—N3121.2 (2)C14—C13—C17116.5 (2)
O1—C1—C2123.5 (2)C14—C13—C12118.7 (2)
N3—C1—C2115.3 (2)C17—C13—C12124.8 (2)
C3—C2—C1122.3 (3)N1—C14—C13123.8 (2)
C3—C2—H2118.8N1—C14—C8116.2 (2)
C1—C2—H2118.8C13—C14—C8120.0 (2)
C2—C3—C4120.3 (2)N1—C15—C16122.7 (2)
C2—C3—H3119.9N1—C15—H15118.7
C4—C3—H3119.9C16—C15—H15118.7
C5—C4—C3118.9 (3)C17—C16—C15119.5 (2)
C5—C4—H4120.6C17—C16—H16120.3
C3—C4—H4120.6C15—C16—H16120.3
C4—C5—N3121.4 (3)C16—C17—C13119.8 (2)
C4—C5—H5119.3C16—C17—H17120.1
N3—C5—H5119.3C13—C17—H17120.1
N2—C6—C7122.5 (2)N2—Cu1—N180.75 (8)
N2—C6—N3118.1 (2)N2—Cu1—O180.70 (7)
C7—C6—N3119.4 (2)N1—Cu1—O1147.25 (8)
C10—C7—C6119.2 (2)N2—Cu1—Cl1158.03 (7)
C10—C7—H7120.4N1—Cu1—Cl192.93 (6)
C6—C7—H7120.4O1—Cu1—Cl194.29 (5)
N2—C8—C9123.5 (2)N2—Cu1—Cl297.87 (6)
N2—C8—C14116.4 (2)N1—Cu1—Cl2115.81 (6)
C9—C8—C14120.1 (2)O1—Cu1—Cl293.32 (6)
C8—C9—C10116.2 (2)Cl1—Cu1—Cl2103.79 (3)
C8—C9—C11118.8 (2)C15—N1—C14117.8 (2)
C10—C9—C11125.0 (2)C15—N1—Cu1129.52 (17)
C7—C10—C9120.3 (2)C14—N1—Cu1112.63 (15)
C7—C10—H10119.9C6—N2—C8118.2 (2)
C9—C10—H10119.9C6—N2—Cu1128.23 (16)
C12—C11—C9121.2 (2)C8—N2—Cu1113.10 (15)
C12—C11—H11119.4C5—N3—C1121.5 (2)
C9—C11—H11119.4C5—N3—C6117.0 (2)
C11—C12—C13121.1 (2)C1—N3—C6121.5 (2)
C11—C12—H12119.4C1—O1—Cu1117.28 (17)
C13—C12—H12119.4
O1—C1—C2—C3−176.6 (3)Cl1—Cu1—N1—C1525.1 (2)
N3—C1—C2—C34.1 (4)Cl2—Cu1—N1—C15−81.8 (2)
C1—C2—C3—C4−0.1 (4)N2—Cu1—N1—C147.26 (17)
C2—C3—C4—C5−1.7 (4)O1—Cu1—N1—C14−49.0 (2)
C3—C4—C5—N3−0.8 (4)Cl1—Cu1—N1—C14−151.57 (16)
N2—C6—C7—C102.2 (4)Cl2—Cu1—N1—C14101.59 (16)
N3—C6—C7—C10−177.9 (2)C7—C6—N2—C8−1.1 (4)
N2—C8—C9—C101.1 (4)N3—C6—N2—C8179.0 (2)
C14—C8—C9—C10179.1 (2)C7—C6—N2—Cu1170.42 (19)
N2—C8—C9—C11−179.5 (2)N3—C6—N2—Cu1−9.5 (3)
C14—C8—C9—C11−1.6 (3)C9—C8—N2—C6−0.6 (4)
C6—C7—C10—C9−1.6 (4)C14—C8—N2—C6−178.6 (2)
C8—C9—C10—C70.0 (4)C9—C8—N2—Cu1−173.35 (19)
C11—C9—C10—C7−179.3 (3)C14—C8—N2—Cu18.6 (3)
C8—C9—C11—C122.4 (4)N1—Cu1—N2—C6179.5 (2)
C10—C9—C11—C12−178.3 (3)O1—Cu1—N2—C6−27.6 (2)
C9—C11—C12—C13−0.5 (4)Cl1—Cu1—N2—C6−105.8 (2)
C11—C12—C13—C14−2.2 (4)Cl2—Cu1—N2—C664.5 (2)
C11—C12—C13—C17179.1 (3)N1—Cu1—N2—C8−8.60 (16)
C17—C13—C14—N11.2 (4)O1—Cu1—N2—C8144.29 (17)
C12—C13—C14—N1−177.6 (2)Cl1—Cu1—N2—C866.0 (2)
C17—C13—C14—C8−178.3 (2)Cl2—Cu1—N2—C8−123.61 (16)
C12—C13—C14—C83.0 (3)C4—C5—N3—C15.1 (4)
N2—C8—C14—N1−2.5 (3)C4—C5—N3—C6−172.4 (3)
C9—C8—C14—N1179.4 (2)O1—C1—N3—C5174.1 (2)
N2—C8—C14—C13177.0 (2)C2—C1—N3—C5−6.5 (3)
C9—C8—C14—C13−1.1 (3)O1—C1—N3—C6−8.4 (4)
N1—C15—C16—C171.2 (4)C2—C1—N3—C6170.9 (2)
C15—C16—C17—C13−1.3 (4)N2—C6—N3—C5−142.1 (2)
C14—C13—C17—C160.2 (4)C7—C6—N3—C538.0 (3)
C12—C13—C17—C16178.9 (3)N2—C6—N3—C140.3 (3)
C16—C15—N1—C140.2 (4)C7—C6—N3—C1−139.6 (3)
C16—C15—N1—Cu1−176.3 (2)N3—C1—O1—Cu1−46.7 (3)
C13—C14—N1—C15−1.4 (4)C2—C1—O1—Cu1134.1 (2)
C8—C14—N1—C15178.1 (2)N2—Cu1—O1—C155.40 (19)
C13—C14—N1—Cu1175.69 (18)N1—Cu1—O1—C1111.6 (2)
C8—C14—N1—Cu1−4.8 (3)Cl1—Cu1—O1—C1−146.15 (19)
N2—Cu1—N1—C15−176.1 (2)Cl2—Cu1—O1—C1−42.04 (19)
O1—Cu1—N1—C15127.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2647).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Gemany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography