PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m979–m980.
Published online 2008 July 5. doi:  10.1107/S1600536808019673
PMCID: PMC2961909

Aqua­[4-(hydroxy­imino­meth­yl)pyridine-κN 1](pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)copper(II)

Abstract

In the title compound, [Cu(C7H3NO4)(C6H6N2O)(H2O)], the coordination geometry of the CuII atom can be described as distorted square pyramidal. The basal plane is defined by one N atom and two O atoms from the deprotonated pyridine-2,6-dicarboxyl­ate ligand, and a pyridyl N atom from the 4-pyridyl aldoxime ligand. The apical position is occupied by a water mol­ecule. O—H(...)O hydrogen bonds lead to the formation of a two-dimensional network.

Related literature

For related literature, see: Blake et al. (2002 [triangle]); Germán-Acacio et al. (2007 [triangle]); Ucar et al. (2007 [triangle]); Xie et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m979-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H3NO4)(C6H6N2O)(H2O)]
  • M r = 368.79
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m979-efi1.jpg
  • a = 6.7826 (2) Å
  • b = 7.1858 (3) Å
  • c = 14.8746 (6) Å
  • α = 76.154 (2)°
  • β = 87.152 (1)°
  • γ = 69.739 (1)°
  • V = 659.91 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.69 mm−1
  • T = 120 (2) K
  • 0.16 × 0.14 × 0.04 mm

Data collection

  • Bruker–Nonius APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.763, T max = 0.925
  • 12553 measured reflections
  • 2951 independent reflections
  • 2814 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.103
  • S = 1.10
  • 2951 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019673/hy2141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019673/hy2141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges the Overseas Research Scholarship Award Scheme and a Postgraduate Scholarship from the University of Bristol for funding, thanks Professor A. G. Orpen, University of Bristol, for his advice and support, and thanks the Structural Chemistry group, University of Bristol.

supplementary crystallographic information

Comment

In the design and synthesis of polymeric complexes, various bridging and chelating ligands have been used extensively. Coordination bonds and hydrogen bonds are the major interactions in these assemblies (Xie et al., 2004). Pyridine-2,6-dicarboxylic acid (H2pydc) is an efficient ligand with three coordinating sites. H2pydc coordinates with transition metals in different ways to form various coordination geometries. The relative positions of the coordinating atoms (O and N) determine the type of coordination that will be seen in the molecular structure. The interest in this ligand centers on the versatile yet unpredictable manner in which it coordinates to a wide variety of metals due to its rigid and planar nature (Ucar et al., 2007). This paper aims to report one of the rare coordination modes that can be exhibited by copper(II) when coordinated by H2pydc, 4-pyridyl aldoxime and H2O.

The structure of the title compound is shown in Fig. 1. The molecule is approximately planar and the increased co-planarity is due to the resonance between the pyridine rings, which leads to the formation of square-pyramidal geometry (Fig. 1). The elongated square-pyramidal geometry of the structure (Table 1) is typical of Jahn-Teller-distorted copper(II) (Blake et al., 2002). The structure shows hydrogen-bonding interactions, which enhance the formation of two-dimensional network of the structure (Germán-Acacio et al., 2007). Bond lengths and angles are in the range expected for heteroaromatic-oximes and pryridne dicarboxylates. The hydrogen-bonding interactions are presented in Fig. 2. A l l the hydrogen-bonding donors and acceptors are involved in O—H···O hydrogen bonds (Table 2), which organize the molecules into a two-dimensional network (Fig. 3).

Experimental

An aqueous solution of Cu(CH3COO)2.6H2O (0.290 g, 1 mmol), KOH (0.220 g, 2 mmol) and H2pydc (0.360 g, 2 mmol) in a 1:2:2 molar ratio was refluxed for 2 h and the resultant reaction mixture was reduced to less than 50 ml. After one day, the grown crystals of K2[Cu(C7H3NO4)2] were filtered out and dried in air. Equimolar amounts of K2[Cu(C7H3NO4)2] and 4-pyridyl aldoxime were dissolved in water in small vials, respectively, and then mixed together. The solution was left at room temperature in a vapour diffusion setup with ethanol. Blue crystals of the title compound were obtained after 3 weeks.

Refinement

H atoms bonded to O atoms were located in a difference map and fixed in the refinements with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, showing the coordination geometry. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram viewed down the c-axis, showing hydrogen bonds (dashed lines).
Fig. 3.
View of a two-dimensional hydrogen-bonded layer along the c-axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C7H3NO4)(C6H6N2O)(H2O)]Z = 2
Mr = 368.79F000 = 374
Triclinic, P1Dx = 1.848 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.7826 (2) ÅCell parameters from 18028 reflections
b = 7.1858 (3) Åθ = 2.9–27.5º
c = 14.8746 (6) ŵ = 1.69 mm1
α = 76.154 (2)ºT = 120 (2) K
β = 87.152 (1)ºPlate, blue
γ = 69.739 (1)º0.16 × 0.14 × 0.04 mm
V = 659.91 (4) Å3

Data collection

Bruker–Nonius APEXII CCD diffractometer2951 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2814 reflections with I > 2σ(I)
Monochromator: 10cm confocal mirrorsRint = 0.055
Detector resolution: 4096x4096 pixels / 62x62mm pixels mm-1θmax = 27.4º
T = 120(2) Kθmin = 3.1º
[var phi] and ω scansh = 0→8
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −8→9
Tmin = 0.763, Tmax = 0.925l = −18→19
12553 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.103  w = 1/[σ2(Fo2) + (0.0515P)2 + 1.382P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2951 reflectionsΔρmax = 0.49 e Å3
209 parametersΔρmin = −0.47 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.89909 (5)0.56560 (4)0.26849 (2)0.01368 (12)
C10.7448 (4)0.2868 (4)0.22309 (17)0.0146 (5)
C20.9262 (4)0.2935 (4)0.15912 (17)0.0140 (5)
C31.0017 (4)0.1862 (4)0.09243 (18)0.0165 (5)
H30.93790.09620.07970.020*
C41.1751 (4)0.2134 (4)0.04381 (18)0.0176 (5)
H41.23210.1389−0.00190.021*
C51.2656 (4)0.3486 (4)0.06166 (18)0.0170 (5)
H51.38210.36930.02810.020*
C61.1803 (4)0.4515 (4)0.12958 (17)0.0147 (5)
C71.2478 (4)0.6059 (4)0.16230 (17)0.0145 (5)
N20.8203 (3)0.6662 (3)0.38093 (15)0.0140 (4)
C90.8504 (4)0.8386 (4)0.38654 (18)0.0149 (5)
H90.90580.90870.33490.018*
C100.8047 (4)0.9181 (4)0.46359 (18)0.0152 (5)
H100.82491.04220.46420.018*
C110.7280 (4)0.8137 (4)0.54125 (17)0.0145 (5)
C120.6947 (4)0.6355 (4)0.53510 (18)0.0164 (5)
H120.64040.56190.58590.020*
C130.7416 (4)0.5671 (4)0.45432 (18)0.0161 (5)
H130.71740.44650.45060.019*
C140.6845 (4)0.8833 (4)0.62729 (18)0.0169 (5)
H140.61670.81890.67590.020*
N11.0162 (3)0.4206 (3)0.17580 (15)0.0138 (4)
N30.7389 (3)1.0317 (4)0.63636 (15)0.0172 (4)
O10.6349 (3)0.1882 (3)0.21279 (13)0.0174 (4)
O20.7219 (3)0.3883 (3)0.28564 (13)0.0167 (4)
O31.1531 (3)0.6594 (3)0.23461 (13)0.0175 (4)
O41.3813 (3)0.6698 (3)0.12037 (13)0.0187 (4)
O50.6858 (3)0.8261 (3)0.16420 (12)0.0159 (4)
H5C0.67030.93600.17890.024*
H5B0.57290.80940.15860.024*
O60.6877 (3)1.0704 (3)0.72334 (13)0.0215 (4)
H60.73761.15740.73140.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01538 (18)0.01586 (18)0.01443 (18)−0.00932 (13)0.00346 (12)−0.00687 (12)
C10.0162 (12)0.0134 (11)0.0143 (11)−0.0060 (9)0.0011 (9)−0.0022 (9)
C20.0149 (11)0.0129 (11)0.0144 (11)−0.0061 (9)0.0004 (9)−0.0016 (9)
C30.0206 (12)0.0160 (12)0.0177 (12)−0.0105 (10)0.0004 (10)−0.0063 (10)
C40.0225 (13)0.0182 (12)0.0156 (12)−0.0084 (10)0.0035 (10)−0.0086 (10)
C50.0179 (12)0.0186 (12)0.0160 (12)−0.0079 (10)0.0005 (9)−0.0043 (10)
C60.0147 (11)0.0154 (11)0.0151 (11)−0.0071 (9)0.0008 (9)−0.0028 (9)
C70.0166 (12)0.0152 (11)0.0139 (11)−0.0079 (9)−0.0011 (9)−0.0039 (9)
N20.0138 (10)0.0160 (10)0.0149 (10)−0.0075 (8)0.0024 (8)−0.0056 (8)
C90.0136 (11)0.0145 (11)0.0161 (12)−0.0045 (9)0.0008 (9)−0.0031 (9)
C100.0145 (11)0.0145 (11)0.0184 (12)−0.0073 (9)−0.0003 (9)−0.0037 (9)
C110.0115 (11)0.0181 (12)0.0158 (12)−0.0071 (9)0.0009 (9)−0.0050 (9)
C120.0168 (12)0.0194 (12)0.0167 (12)−0.0110 (10)0.0010 (9)−0.0038 (10)
C130.0144 (11)0.0181 (12)0.0182 (12)−0.0087 (10)0.0004 (9)−0.0037 (10)
C140.0156 (12)0.0215 (12)0.0159 (12)−0.0091 (10)0.0018 (9)−0.0048 (10)
N10.0157 (10)0.0154 (10)0.0142 (10)−0.0090 (8)0.0017 (8)−0.0054 (8)
N30.0170 (10)0.0240 (11)0.0152 (10)−0.0099 (9)0.0035 (8)−0.0092 (9)
O10.0198 (9)0.0155 (8)0.0211 (9)−0.0109 (7)0.0014 (7)−0.0051 (7)
O20.0199 (9)0.0189 (9)0.0168 (9)−0.0124 (7)0.0041 (7)−0.0066 (7)
O30.0184 (9)0.0222 (9)0.0178 (9)−0.0119 (7)0.0030 (7)−0.0088 (7)
O40.0192 (9)0.0222 (9)0.0201 (9)−0.0129 (8)0.0035 (7)−0.0069 (7)
O50.0147 (8)0.0166 (8)0.0188 (9)−0.0069 (7)0.0031 (7)−0.0072 (7)
O60.0280 (10)0.0280 (10)0.0190 (9)−0.0173 (9)0.0085 (8)−0.0150 (8)

Geometric parameters (Å, °)

Cu1—N11.903 (2)C7—O31.295 (3)
Cu1—N21.957 (2)N2—C91.345 (3)
Cu1—O22.0018 (18)N2—C131.348 (3)
Cu1—O32.0574 (18)C9—C101.375 (4)
Cu1—O52.2273 (18)C9—H90.9500
C1—O11.229 (3)C10—C111.401 (3)
C1—O21.286 (3)C10—H100.9500
C1—C21.524 (3)C11—C121.399 (3)
C2—N11.334 (3)C11—C141.463 (4)
C2—C31.372 (4)C12—C131.387 (4)
C3—C41.397 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.394 (4)C14—N31.280 (3)
C4—H40.9500C14—H140.9500
C5—C61.380 (4)N3—O61.390 (3)
C5—H50.9500O5—H5C0.8400
C6—N11.335 (3)O5—H5B0.8263
C6—C71.520 (3)O6—H60.8400
C7—O41.231 (3)
N1—Cu1—N2168.18 (9)C9—N2—C13118.4 (2)
N1—Cu1—O281.66 (8)C9—N2—Cu1118.92 (17)
N2—Cu1—O297.18 (8)C13—N2—Cu1122.68 (18)
N1—Cu1—O379.84 (8)N2—C9—C10123.0 (2)
N2—Cu1—O399.02 (8)N2—C9—H9118.5
O2—Cu1—O3159.29 (8)C10—C9—H9118.5
N1—Cu1—O591.57 (8)C9—C10—C11119.2 (2)
N2—Cu1—O5100.24 (8)C9—C10—H10120.4
O2—Cu1—O596.71 (7)C11—C10—H10120.4
O3—Cu1—O593.03 (7)C12—C11—C10117.8 (2)
O1—C1—O2125.2 (2)C12—C11—C14119.7 (2)
O1—C1—C2119.9 (2)C10—C11—C14122.5 (2)
O2—C1—C2114.9 (2)C13—C12—C11119.5 (2)
N1—C2—C3120.4 (2)C13—C12—H12120.2
N1—C2—C1111.3 (2)C11—C12—H12120.2
C3—C2—C1128.3 (2)N2—C13—C12122.1 (2)
C2—C3—C4118.0 (2)N2—C13—H13119.0
C2—C3—H3121.0C12—C13—H13119.0
C4—C3—H3121.0N3—C14—C11119.3 (2)
C5—C4—C3120.7 (2)N3—C14—H14120.4
C5—C4—H4119.7C11—C14—H14120.4
C3—C4—H4119.7C2—N1—C6122.9 (2)
C6—C5—C4117.9 (2)C2—N1—Cu1117.51 (17)
C6—C5—H5121.1C6—N1—Cu1119.60 (17)
C4—C5—H5121.1C14—N3—O6110.1 (2)
N1—C6—C5120.2 (2)C1—O2—Cu1113.75 (16)
N1—C6—C7111.4 (2)C7—O3—Cu1113.79 (16)
C5—C6—C7128.5 (2)Cu1—O5—H5C109.5
O4—C7—O3125.6 (2)Cu1—O5—H5B110.7
O4—C7—C6120.1 (2)H5C—O5—H5B112.6
O3—C7—C6114.3 (2)N3—O6—H6109.5
O1—C1—C2—N1174.9 (2)C12—C11—C14—N3171.6 (2)
O2—C1—C2—N1−5.5 (3)C10—C11—C14—N3−7.7 (4)
O1—C1—C2—C3−6.4 (4)C3—C2—N1—C60.4 (4)
O2—C1—C2—C3173.2 (2)C1—C2—N1—C6179.2 (2)
N1—C2—C3—C40.5 (4)C3—C2—N1—Cu1179.26 (19)
C1—C2—C3—C4−178.1 (2)C1—C2—N1—Cu1−1.9 (3)
C2—C3—C4—C5−1.2 (4)C5—C6—N1—C2−0.6 (4)
C3—C4—C5—C61.0 (4)C7—C6—N1—C2179.3 (2)
C4—C5—C6—N1−0.1 (4)C5—C6—N1—Cu1−179.45 (19)
C4—C5—C6—C7−179.9 (2)C7—C6—N1—Cu10.4 (3)
N1—C6—C7—O4−171.9 (2)N2—Cu1—N1—C290.7 (4)
C5—C6—C7—O47.9 (4)O2—Cu1—N1—C25.49 (18)
N1—C6—C7—O37.7 (3)O3—Cu1—N1—C2176.1 (2)
C5—C6—C7—O3−172.5 (2)O5—Cu1—N1—C2−91.07 (19)
N1—Cu1—N2—C9116.4 (4)N2—Cu1—N1—C6−90.4 (4)
O2—Cu1—N2—C9−160.01 (19)O2—Cu1—N1—C6−175.6 (2)
O3—Cu1—N2—C932.9 (2)O3—Cu1—N1—C6−4.92 (19)
O5—Cu1—N2—C9−61.82 (19)O5—Cu1—N1—C687.88 (19)
N1—Cu1—N2—C13−61.9 (5)C11—C14—N3—O6−178.7 (2)
O2—Cu1—N2—C1321.7 (2)O1—C1—O2—Cu1−170.6 (2)
O3—Cu1—N2—C13−145.3 (2)C2—C1—O2—Cu19.9 (3)
O5—Cu1—N2—C13119.9 (2)N1—Cu1—O2—C1−8.63 (17)
C13—N2—C9—C100.0 (4)N2—Cu1—O2—C1−176.76 (17)
Cu1—N2—C9—C10−178.33 (19)O3—Cu1—O2—C1−35.5 (3)
N2—C9—C10—C111.6 (4)O5—Cu1—O2—C181.98 (17)
C9—C10—C11—C12−2.2 (4)O4—C7—O3—Cu1168.1 (2)
C9—C10—C11—C14177.2 (2)C6—C7—O3—Cu1−11.5 (3)
C10—C11—C12—C131.1 (4)N1—Cu1—O3—C79.31 (17)
C14—C11—C12—C13−178.3 (2)N2—Cu1—O3—C7177.38 (17)
C9—N2—C13—C12−1.1 (4)O2—Cu1—O3—C736.3 (3)
Cu1—N2—C13—C12177.19 (19)O5—Cu1—O3—C7−81.74 (18)
C11—C12—C13—N20.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5C···O1i0.841.932.769 (3)180
O5—H5B···O4ii0.832.072.836 (3)155
O5—H5B···O6iii0.832.512.939 (3)113
O6—H6···O3iv0.841.892.725 (3)173

Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2141).

References

  • Blake, A. J., Felloni, M., Hubberstey, P., Wilson, C. & Schröder, M. (2002). Acta Cryst. E58, m43–m46.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Germán-Acacio, J. M., Hernández-Ortega, S. & Valdés-Martínez, J. (2007). Acta Cryst. E63, m1057–m1058.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ucar, I., Karabulut, B., Bulut, A. & Büyükgüngör, O. (2007). J. Mol. Struct.834836, 336–344.
  • Xie, C., Zhang, B., Liu, X., Wang, X., Kou, H., Shen, G. & Shen, D. (2004). Inorg. Chem. Commun.7, 1037–1040.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography