PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): i52.
Published online 2008 July 31. doi:  10.1107/S1600536808020151
PMCID: PMC2961907

The δ-phase of SrTeO3 at 780 K1

Abstract

As part of a structural investigation of strontium tellurate(IV) (STO), SrTeO3, with particular emphasis on the crystal chemistry and phase transitions, the structure of the δ-phase has been determined at 780 K using a single-crystal analysis. Both structural and non-linear optical measurements indicate that STO undergoes a γ→δ second-order ferroelectric phase transition at 633 K from the C2 (γ) to the C2/m (δ) modification. Systematic differences between the similar γ- and δ-phase structures were determined and it was found that this phase transformation can be described by a displacive mechanism.

Related literature

Single crystals of strontium tellurate(IV) (STO) were prepared by Sadovskaya (1984 [triangle]). Structural phase transitions of STO have been studied by X-ray powder diffraction by Ismailzade et al. (1979 [triangle]) and Simon et al. (1979 [triangle]), neutron powder diffraction studies have been conducted by Dityatiev et al. (2006 [triangle]) and second harmonic generation studies by Libertz & Sadovskaya (1980 [triangle]). The temperature dependence of the physical properties of STO was analysed by Yamada & Iwasaki (1972 [triangle], 1973 [triangle]), Yamada (1975 [triangle]) and Kudzin et al. (1988 [triangle]). For related literature, see: Antonenko et al. (1982 [triangle]); Avramenko et al. (1984 [triangle]); Kudzin et al. (1982 [triangle]); Zavodnik et al. (2007a [triangle],b [triangle],c [triangle]).

Experimental

Crystal data

  • SrTeO3
  • M r = 263.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i52-efi1.jpg
  • a = 28.438 (6) Å
  • b = 5.950 (1) Å
  • c = 15.550 (3) Å
  • β = 122.45 (3)°
  • V = 2220.3 (8) Å3
  • Z = 24
  • Mo Kα radiation
  • μ = 22.11 mm−1
  • T = 780 (2) K
  • 0.13 × 0.10 × 0.04 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: analytical (Alcock, 1970 [triangle]) T min = 0.169, T max = 0.475
  • 1681 measured reflections
  • 1611 independent reflections
  • 538 reflections with I > 2σ(I)
  • R int = 0.062
  • θmax = 22.5°
  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.095
  • S = 0.78
  • 1611 reflections
  • 118 parameters
  • Δρmax = 1.22 e Å−3
  • Δρmin = −1.12 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993 [triangle]); cell refinement: CAD-4-PC; data reduction: CAD-4-PC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: CIFTAB97 (Sheldrick, 2008 [triangle]) and SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020151/br2075sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020151/br2075Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr L. Ya. Sadovskaya for the single crystal preparation and Dr S. Yu. Stefanovich for the second harmonic generation measurements. This research was supported by the Russian Foundation for Basic Research (grant No. 06-03-32449).

supplementary crystallographic information

Comment

The origin of unusual ferroelectric properties and several phase transitions between α–β (350 K), β–γ (590 K) and γ–δ (760 K) polymorphs of STO were hotly debated long time (Yamada & Iwasaki, 1973; Yamada, 1975; Simon et al., 1979; Ismailzade et al., 1979; Libertz & Sadovskaya, 1980, Antonenko et al., 1982; Kudzin et al., 1988) but the detailed structure data are lacking. Recently, in our several papers of the present series (Zavodnik et al., 2007a,b,c,) the structures of α (T < 363 K), β (363 K < T < 563 K) and γ (563 K < T <633 K) phases STO were reported. The purpose of the present communication is to report on the structure of δ-phase and clarify the nature of γ–δ ferroelectric phase transition at 633 K. There is a number of experimental studies of dielectric, elastic, piezoelectric and optical properties near well known reversible γ–δ phase transition at 633 K (Ismailzade et al., 1979; Libertz & Sadovskaya, 1980; Kudzin et al., 1982, 1988; Sadovskaya, 1984; Antonenko et al., 1982). All the measured constants exhibit significant changes but the lack of thermal hysteresis or phase coexistence at this transition is indicative of a second order transformation. Around 633 K the SHG signal vanishes indicating that the δ-structure is centrosymmetrical. No success was obtained in earlier attempts to determine the δ phase structure using X-ray and neutron powder diffraction studies (Simon et al., 1979; Ismailzade et al., 1979; Dityatiev et al., 2006). The structure of δ-phase STO forms a three-dimensional lattice consisting types of irregular n-vertex SrOn (n = 6, 7, 8) polyhedra sharing corners or faces and TeO3 pyramidal units which share edges with Sr-polyhedra but are not connected to each other. The projection along the b axis (Fig. 1) shows two sorts of tunnels running along that direction. Te4+ cations are located inside the tunnels of different sizes and shapes which represent the required space for the lone-electron pairs within the structure. From a comparison of atomic coordinates of comparable atoms in γ and δ phases the atomic polar displacements required to achieve centrosymmetry were determined. The structures of these polymorphs are similar and the phase transformation can be realised by the orientation and tilts of the TeO3 pyramids and also by the variation in n-vertex SrOn polyhedra without a serious changing the building structural blocks. The Te6—O31 bond length is located at distance greater than 2.8 Å and does not contribute to the first coordination sphere of Te4+. Probably, γ–δ phase transition in STO can be described by displacive mechanism rather than by order–disorder model. The structure–property correlation in STO is in progress and will be reported later.

Experimental

The single crystals of STO were grown by Czochralski technique as described earlier (Libertz & Sadovskaya, 1980; Avramenko et al., 1984). The products were characterized in a scanning electron microscope (Jeol 820) with an energy-dispersive spectrometer (LINK AN10000), confirming the presence and stoichiometry of Sr and Te. SHG measurements showed that there is a symmetry centre in δ-phase (which is stable above 633 K) in a full agreement with the results (Libertz & Sadovskaya, 1980).

Refinement

The atomic coordinates of all Sr and Te cations in γ-phase were used as starting parameters. The O atoms were localized by difference Fourier maps. The selection of space group C2/m for description of crystal structure of δ-phase STO was based on the experimental data of second harmonic generation (SHG) obtained on tested single crystals. The temperature dependence of SHG signal confirms that the structure of δ-phase STO is centrosymmetric. Precise X-ray diffraction study of single crystals at high temperatures is a challenging task because there is usually only a small number of measured X-ray reflections in the data and they cover a rather limited range of sinθ/λ. At 780 K it was impossible to registrate any reflections with sinθ/λ > 0.54. The thermal vibration parameters for oxygen anions were very high and strongly anisotropic. It was difficult to use an anisotropic approximation in this high-temperature refinement because the ratio of statistically reliable reflections to a number of refined parameters was very far from an optimal value. The positive definite refinements with anisotropic atomic displacement parameters were impossible for O atoms at 780 K. It was a main reason why the oxygen atoms were refined isotropically. A special attention must be given to the accuracy of interatomic distances of Te—O which are not rather similar as in the case of α, β and γ-phases (Zavodnik et al., 2007a,b,c). But all these Te—O bond lengths can be found acceptable if we take into account the standard deviation. The highest residual electron density peak is located 0.87 Å from atom Sr1 and the deepest hole is located 0.12 Å from atom Te4. Several atoms (Sr6, O12, O22 and O52) have increased isotropic atomic displacement parameters. These atoms are located inside significant voids which are larger than the voids for the rest of the atoms. The same peculiarity was also observed for the α- β and γ-STO structures.

Figures

Fig. 1.
The crystal structure of δ-SrTeO3 at 780 K. The sequence of Sr polyhedra are presented, Te cations occupy two different kinds of voids in a three-dimensional lattice.

Crystal data

SrTeO3F000 = 2736
Mr = 263.22Dx = 4.725 Mg m3
Monoclinic, C2/mMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 24 reflections
a = 28.438 (6) Åθ = 12.3–13.8º
b = 5.950 (1) ŵ = 22.11 mm1
c = 15.550 (3) ÅT = 780 (2) K
β = 122.45 (3)ºTriangular prism, colourless
V = 2220.3 (8) Å30.13 × 0.10 × 0.04 mm
Z = 24

Data collection

Enraf–Nonius CAD-4 with high-temperature device diffractometerRint = 0.062
Radiation source: fine-focus sealed tubeθmax = 22.5º
Monochromator: β-filterθmin = 1.6º
T = 780(2) Kh = −30→25
ω/2θ scansk = 0→6
Absorption correction: analytical(Alcock, 1970)l = 0→16
Tmin = 0.169, Tmax = 0.4753 standard reflections
1681 measured reflections every 60 min
1611 independent reflections intensity decay: none
538 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0453P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max = 0.001
wR(F2) = 0.095Δρmax = 1.22 e Å3
S = 0.78Δρmin = −1.12 e Å3
1611 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
118 parametersExtinction coefficient: 0.00009 (2)
Primary atom site location: isomorphous structure methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Te1−0.01963 (9)0.50000.1468 (2)0.0530 (8)
Te20.49464 (8)0.50000.65585 (18)0.0423 (7)
Te30.11483 (9)0.00000.2806 (2)0.0396 (6)
Te40.35697 (9)0.00000.2329 (2)0.0566 (8)
Te50.14971 (9)1.0000−0.00115 (19)0.0548 (8)
Te60.26235 (9)0.50000.41676 (19)0.0345 (7)
Sr10.12254 (12)0.50000.4219 (3)0.0458 (10)
Sr20.24767 (12)0.50000.1092 (3)0.0437 (10)
Sr30.24223 (13)0.00000.2740 (3)0.0507 (11)
Sr40.37724 (11)0.50000.3964 (3)0.0479 (11)
Sr50.12358 (13)0.50000.1520 (3)0.0501 (11)
Sr60.00000.00000.00000.070 (2)
Sr70.50001.00000.50000.0588 (18)
O110.0554 (10)0.50000.223 (2)0.097 (9)*
O12−0.0384 (15)0.317 (7)0.050 (3)0.277 (19)*
O210.4492 (5)0.724 (3)0.5733 (11)0.071 (5)*
O220.5456 (15)0.50000.629 (3)0.158 (14)*
O310.1641 (7)0.231 (4)0.3268 (14)0.100 (6)*
O320.0981 (11)0.00000.148 (2)0.100 (9)*
O410.3148 (5)−0.225 (3)0.2374 (10)0.071 (5)*
O420.4029 (12)0.00000.373 (2)0.112 (9)*
O510.1756 (6)0.761 (3)0.0923 (11)0.078 (5)*
O520.2055 (17)1.0000−0.017 (4)0.197 (18)*
O610.2317 (7)0.50000.2770 (15)0.056 (6)*
O620.3118 (5)0.737 (3)0.4416 (11)0.066 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Te10.0488 (12)0.0602 (19)0.0407 (15)0.0000.0179 (12)0.000
Te20.0397 (13)0.0482 (17)0.0380 (14)0.0000.0202 (11)0.000
Te30.0456 (12)0.0372 (15)0.0406 (14)0.0000.0262 (11)0.000
Te40.0529 (14)0.0416 (18)0.084 (2)0.0000.0420 (14)0.000
Te50.0457 (13)0.0585 (19)0.0394 (14)0.0000.0090 (12)0.000
Te60.0346 (11)0.0316 (15)0.0364 (14)0.0000.0184 (10)0.000
Sr10.0464 (18)0.030 (2)0.045 (2)0.0000.0134 (16)0.000
Sr20.0412 (18)0.037 (2)0.044 (2)0.0000.0167 (17)0.000
Sr30.057 (2)0.047 (3)0.039 (2)0.0000.0199 (18)0.000
Sr40.0411 (18)0.049 (3)0.051 (2)0.0000.0233 (18)0.000
Sr50.0465 (18)0.055 (3)0.046 (2)0.0000.0234 (17)0.000
Sr60.052 (3)0.071 (5)0.054 (4)0.0000.007 (3)0.000
Sr70.032 (2)0.079 (5)0.056 (4)0.0000.018 (2)0.000

Geometric parameters (Å, °)

Te1—O121.70 (5)Sr3—O62iv2.759 (16)
Te1—O111.80 (2)Sr3—O412.763 (16)
Te2—O221.71 (4)Sr3—O51iv2.801 (16)
Te2—O211.820 (16)Sr3—O612.993 (2)
Te3—O311.82 (2)Sr3—O313.08 (2)
Te3—O321.85 (3)Sr4—O22v2.43 (4)
Te4—O411.822 (17)Sr4—O41iii2.690 (16)
Te4—O421.84 (3)Sr4—O622.712 (15)
Te5—O521.73 (4)Sr4—O212.736 (15)
Te5—O511.879 (18)Sr4—O423.132 (10)
Te6—O611.86 (2)Sr5—O612.612 (18)
Te6—O621.880 (16)Sr5—O512.635 (18)
Sr1—O62i2.487 (15)Sr5—O112.69 (3)
Sr1—O112.62 (3)Sr5—O312.811 (19)
Sr1—O21i2.651 (17)Sr5—O12vi2.95 (4)
Sr1—O312.83 (2)Sr5—O323.054 (6)
Sr2—O52ii2.42 (5)Sr6—O322.49 (3)
Sr2—O512.469 (17)Sr6—O122.50 (5)
Sr2—O41iii2.493 (16)Sr7—O42vii2.38 (3)
Sr2—O612.88 (2)Sr7—O212.802 (17)
O12—Te1—O12viii79 (3)O41iii—Sr4—O62110.4 (5)
O12—Te1—O11106.2 (14)O41vii—Sr4—O6273.4 (5)
O22—Te2—O21101.7 (10)O62viii—Sr4—O6262.7 (8)
O21viii—Te2—O2194.1 (10)O22v—Sr4—O2184.9 (8)
O31—Te3—O31iii98.7 (12)O41iii—Sr4—O21171.5 (5)
O31—Te3—O3297.1 (8)O41vii—Sr4—O21113.3 (6)
O41—Te4—O41iii94.4 (11)O62viii—Sr4—O21103.9 (5)
O41—Te4—O4291.1 (8)O62—Sr4—O2174.5 (4)
O52—Te5—O5195.8 (11)O22v—Sr4—O21viii84.9 (8)
O51ix—Te5—O5198.4 (10)O41iii—Sr4—O21viii113.3 (6)
O61—Te6—O6294.0 (6)O41vii—Sr4—O21viii171.5 (5)
O62—Te6—O62viii97.3 (9)O62viii—Sr4—O21viii74.5 (4)
O62x—Sr1—O62i77.9 (8)O62—Sr4—O21viii103.9 (5)
O62i—Sr1—O11138.1 (5)O21—Sr4—O21viii58.3 (7)
O62x—Sr1—O21i127.0 (5)O22v—Sr4—O42vii72.1 (5)
O11—Sr1—O21i87.1 (6)O41iii—Sr4—O42vii123.4 (7)
O62x—Sr1—O21x79.8 (5)O41vii—Sr4—O42vii52.7 (6)
O21i—Sr1—O21x76.6 (7)O62viii—Sr4—O42vii139.5 (6)
O62x—Sr1—O31viii76.0 (5)O62—Sr4—O42vii76.8 (7)
O62i—Sr1—O31viii117.9 (5)O21—Sr4—O42vii63.9 (7)
O11—Sr1—O31viii68.1 (6)O21viii—Sr4—O42vii119.0 (7)
O21i—Sr1—O31viii155.2 (5)O22v—Sr4—O4272.1 (5)
O21x—Sr1—O31viii102.0 (5)O41iii—Sr4—O4252.7 (6)
O62x—Sr1—O31117.9 (5)O41vii—Sr4—O42123.4 (7)
O62i—Sr1—O3176.0 (5)O62viii—Sr4—O4276.8 (7)
O11—Sr1—O3168.1 (6)O62—Sr4—O42139.5 (6)
O21i—Sr1—O31102.0 (5)O21—Sr4—O42119.0 (7)
O21x—Sr1—O31155.2 (5)O21viii—Sr4—O4263.9 (7)
O31viii—Sr1—O3168.7 (8)O42vii—Sr4—O42143.6 (11)
O52ii—Sr2—O51128.6 (7)O61—Sr5—O5166.6 (5)
O51viii—Sr2—O5177.9 (8)O51—Sr5—O51viii72.2 (8)
O52ii—Sr2—O41vii92.5 (8)O61—Sr5—O11120.9 (7)
O51viii—Sr2—O41vii137.2 (5)O51—Sr5—O11143.9 (4)
O51—Sr2—O41vii84.7 (6)O61—Sr5—O31viii64.7 (5)
O41vii—Sr2—O41iii82.1 (8)O51—Sr5—O31viii89.4 (6)
O52ii—Sr2—O61160.0 (10)O51viii—Sr5—O31viii131.2 (5)
O51—Sr2—O6164.6 (5)O11—Sr5—O31viii67.5 (6)
O41vii—Sr2—O6172.6 (4)O61—Sr5—O3164.7 (5)
O62viii—Sr3—O62iv69.0 (7)O51—Sr5—O31131.2 (5)
O62viii—Sr3—O41iii71.6 (4)O51viii—Sr5—O3189.4 (6)
O62iv—Sr3—O41iii103.4 (4)O11—Sr5—O3167.5 (6)
O41iii—Sr3—O4157.9 (7)O31viii—Sr5—O3169.3 (9)
O62viii—Sr3—O51iv173.7 (5)O61—Sr5—O12vi139.2 (9)
O62iv—Sr3—O51iv114.8 (6)O51—Sr5—O12vi98.0 (10)
O41iii—Sr3—O51iv102.3 (5)O51viii—Sr5—O12vi72.8 (9)
O41—Sr3—O51iv73.9 (5)O11—Sr5—O12vi94.2 (9)
O62viii—Sr3—O51viii114.8 (6)O31viii—Sr5—O12vi155.8 (9)
O62iv—Sr3—O51viii173.7 (5)O31—Sr5—O12vi119.6 (10)
O41iii—Sr3—O51viii73.9 (5)O61—Sr5—O12xi139.2 (9)
O41—Sr3—O51viii102.3 (5)O51—Sr5—O12xi72.8 (9)
O51iv—Sr3—O51viii61.0 (8)O51viii—Sr5—O12xi98.0 (10)
O62viii—Sr3—O61iv125.1 (5)O11—Sr5—O12xi94.2 (9)
O62iv—Sr3—O61iv56.6 (5)O31viii—Sr5—O12xi119.6 (10)
O41iii—Sr3—O61iv125.2 (6)O31—Sr5—O12xi155.8 (9)
O41—Sr3—O61iv67.3 (5)O12vi—Sr5—O12xi43.2 (17)
O51iv—Sr3—O61iv59.5 (5)O61—Sr5—O32100.8 (5)
O51viii—Sr3—O61iv120.1 (5)O51—Sr5—O32137.6 (7)
O62viii—Sr3—O6156.6 (5)O51viii—Sr5—O3265.8 (6)
O62iv—Sr3—O61125.1 (5)O11—Sr5—O3278.1 (5)
O41iii—Sr3—O6167.3 (5)O31viii—Sr5—O32122.9 (7)
O41—Sr3—O61125.2 (6)O31—Sr5—O3255.7 (7)
O51iv—Sr3—O61120.1 (5)O12vi—Sr5—O3264.5 (10)
O51viii—Sr3—O6159.5 (5)O12xi—Sr5—O32106.6 (11)
O61iv—Sr3—O61167.5 (8)O61—Sr5—O32vii100.8 (5)
O62viii—Sr3—O3175.4 (4)O51—Sr5—O32vii65.8 (6)
O62iv—Sr3—O31104.8 (5)O51viii—Sr5—O32vii137.6 (7)
O41iii—Sr3—O31124.4 (6)O11—Sr5—O32vii78.1 (5)
O41—Sr3—O31176.4 (5)O31viii—Sr5—O32vii55.7 (7)
O51iv—Sr3—O31107.6 (5)O31—Sr5—O32vii122.9 (7)
O51viii—Sr3—O3181.2 (5)O12vi—Sr5—O32vii106.6 (10)
O61iv—Sr3—O31110.4 (6)O12xi—Sr5—O32vii64.5 (10)
O61—Sr3—O3157.2 (5)O32—Sr5—O32vii153.8 (10)
O62viii—Sr3—O31iii104.8 (5)O32—Sr6—O32xii180.0 (11)
O62iv—Sr3—O31iii75.4 (4)O32—Sr6—O12xii80.0 (9)
O41iii—Sr3—O31iii176.4 (5)O32—Sr6—O12iii100.0 (9)
O41—Sr3—O31iii124.4 (6)O32xii—Sr6—O12iii80.0 (9)
O51iv—Sr3—O31iii81.2 (5)O12xii—Sr6—O12iii82 (2)
O51viii—Sr3—O31iii107.6 (5)O12xii—Sr6—O12vi98 (2)
O61iv—Sr3—O31iii57.2 (5)O12iii—Sr6—O12vi180 (2)
O61—Sr3—O31iii110.4 (6)O32—Sr6—O12100.0 (9)
O31—Sr3—O31iii53.2 (8)O42v—Sr7—O42vii180.0 (11)
O22v—Sr4—O41iii93.3 (8)O42v—Sr7—O21xiii73.6 (7)
O41iii—Sr4—O41vii75.0 (7)O42vii—Sr7—O21xiii106.4 (7)
O22v—Sr4—O62viii148.0 (4)O21xiii—Sr7—O21xiv71.8 (7)
O41iii—Sr4—O62viii73.4 (5)O21xiv—Sr7—O21108.2 (7)
O41vii—Sr4—O62viii110.4 (5)O21xiv—Sr7—O21ix180.0 (5)
O22v—Sr4—O62148.0 (4)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1; (ii) −x+1/2, −y+3/2, −z; (iii) x, −y, z; (iv) x, y−1, z; (v) −x+1, −y+1, −z+1; (vi) −x, y, −z; (vii) x, y+1, z; (viii) x, −y+1, z; (ix) x, −y+2, z; (x) −x+1/2, −y+3/2, −z+1; (xi) −x, −y+1, −z; (xii) −x, −y, −z; (xiii) −x+1, −y+2, −z+1; (xiv) −x+1, y, −z+1.

Footnotes

1On the thermal evolution of the crystal structure of SrTeO3. Part IV.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2075).

References

  • Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 271–278. Copenhagen: Munksgaard.
  • Antonenko, A. N., Kudzin, A. Yu. & Sadovskaya, L. Ya. (1982). Neorg. Mater.18, 1213–1216.
  • Avramenko, V. P., Kudzin, A. Yu. & Sadovskaya, L. Ya. (1984). Solid State Phys.26, 359–360.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Dityatiev, O. A., Berdonosov, P. S., Dolgikh, V. A., Aldous, D. W. & Lightfoot, P. (2006). Solid State Sci.8, 830–835.
  • Enraf–Nonius (1993). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Ismailzade, I. H., Kudzin, A. Yu. & Sadovskaya, L. Ya. (1979). Phys. Status Solidi A, 52, K105–109.
  • Kudzin, A. Yu., Moiseenko, N. V. & Sadovskaya, L. Ya. (1982). Solid State Phys.24, 2837–2839.
  • Kudzin, A. Yu., Pasalskii, V. M., Polesya, A. F. & Sadovskaya, L. Ya. (1988). Ukr. Fiz. Zh.33, 251–253.
  • Libertz, G. V. & Sadovskaya, L. Ya. (1980). Phys. Status Solidi A, 62, K167–168.
  • Sadovskaya, L. Ya. (1984). Thesis, Dnepropetrovsk University, Ukraine.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Simon, A., Von der Mühll, R., Ravez, J., Hagenmuller, P. & Pascual, J. F. (1979). Mater. Res. Bull.14, 27–32.
  • Yamada, T. (1975). Rev. Electr. Commun. Lab 23, 564–568.
  • Yamada, T. & Iwasaki, H. (1972). Appl. Phys. Lett.21, 89–90.
  • Yamada, T. & Iwasaki, H. (1973). J. Appl. Phys.44, 3934–3939.
  • Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007a). Acta Cryst. E63, i75–i76.
  • Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007b). Acta Cryst. E63, i111–i112.
  • Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007c). Acta Cryst. E63, i151.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography