PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): i51.
Published online 2008 July 31. doi:  10.1107/S1600536808023040
PMCID: PMC2961906

The iron phosphate NaBaFe2(PO4)3

Abstract

A new iron phosphate, sodium barium diiron tris­(phosphate), NaBaFe2(PO4)3, has been synthesized by the flux method and shown to exhibit the well known langbeinite type structure. The Na, Ba and Fe atoms all lie on threefold axes, while the P and O atoms occupy general positions, one of the O atoms being disordered over two positions, with site occupancy factors of ca 0.7 and 0.3. The [Fe2(PO4)3] framework consists of FeO6 octa­hedra sharing all their corners with the PO4 tetra­hedra. The Na+ and Ba2+ cations are almost equally distributed over two distinct cavities, in which they occupy slightly different positions.

Related literature

For related literature, see: Baur (1974 [triangle]); Moffat (1978 [triangle]); Padhi et al. (1997 [triangle]); Shannon (1976 [triangle]). For the structure of langbeinite, see Zemann & Zemann (1957 [triangle]); Battle et al. (1986 [triangle], 1988 [triangle]).

Experimental

Crystal data

  • NaBaFe2(PO4)3
  • M r = 556.94
  • Cubic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i51-efi1.jpg
  • a = 9.796 (1) Å
  • V = 940.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.82 mm−1
  • T = 293 (2) K
  • 0.1 × 0.1 × 0.1 mm

Data collection

  • Enraf–Nonius CAD4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.35, T max = 0.46
  • 2114 measured reflections
  • 657 independent reflections
  • 644 reflections with I > 2σ(I)
  • R int = 0.082
  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.059
  • S = 0.92
  • 657 reflections
  • 70 parameters
  • 4 restraints
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.49 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 123 Friedel pairs
  • Flack parameter: −0.03 (3)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond angles (°)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023040/br2076sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023040/br2076Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Iron phosphates are of increasing interst because of their potential applications in various fields ranging from catalysis (Moffat, 1978) to ionic conductivity (Padhi et al., 1997). Moreover, these materials are very attractive in terms of basic reasearch because they exhibit a rich structural chemistry owing to the possible (+2/+3) mixed valence of iron and its tendency to exhibit various coordination polyhedra.

The title cmpound, sodium barium diiron phosphate NaBaFe2(PO4)3 was isolated during a systematic investigation of the Na2O–MO–Fe2O3–P2O5 systems where M is a divalent cation. Its structure (Fig. 1) exhibits a three-dimensional [Fe2(PO4)3] framework built up from corner-sharing FeO6 octahedra and PO4 tetrahedra. Each octahedron is linked to six adjacent tetrahedra and reciprocally each tetrahedron is connected to four neighboring octahedra. This framework delimits two sorts of large cavities, statistically occupied by the Na+ and Ba2+ cations.

The two symmetry distinct FeO6 octahedra contained in this structure are somewhat distorted as indicated by the Fe—O distances ranging from 1.963 (5) to 1.991 (4) Å. The average <Fe—O> distances of 1.986 Å for Fe(1) and 1.973 Å for Fe(2) are slightly lower than the value 2.03 Å predicted by Shannon for octahedral Fe3+ ions (Shannon, 1976).

The PO4 tetrahedron is strongly distorted with P—O distances scattering from 1.47 (2) to 1.547 (7) Å. Corresponding average value of 1.511 Å agrees with those frequently observed in anhydrous monophosphates (Baur, 1974).

The Na+ and Ba2+ cations are statistically distributed over two distinct cavities in which they occupy slightly different positions and have partial occupancies of 0.47, 0.53, 0.53 and 0.47 for Na(1), Ba(1), Na(2) and Ba(2), respectively. The environments of these cations (Fig. 2) were determined assuming all cation-oxygen distances are shorter than the shortest to next cationic site. Each of the Na(1), Ba(1) and Ba(2) environments consists of nine O atoms with cation-oxygen distances in the ranges 2.76 (2)–3.04 (2) Å, 2.753 (7)–2.950 (6) Å and 2.722 (5)–3.047 (7) Å for Na(1), Ba(1) and Ba(2), respectively. The Na(2) environment consists of six O atoms with Na—O distances varying from 2.604 (8) and 3.004 (6) Å.

The as-described structure is closely related to the langbeinite-like phosphates KBaM2(PO4)3 (M = Fe, Cr) (Battle et al., 1986, 1988). However, it differs by the fact that the atom O4, which occupies a single site in the potassium phosphates, is, in the title compound, statistically occupying two distinct positions, O4A and O4B which exhibit partial occupancies of 0.7 and 0.3, respectively. These different values can be explained by the fact that the O4A site is occupied if it is bonded to Na(1), Ba(1) or Ba(2) whereas the O4B site is occupied if it is bonded to Na(1) or Ba(1).

Experimental

Single crystals of the title compund were grown in a flux of sodium dimolybdate Na2Mo2O7 with an atomic ratio P:Mo = 6:1. A starting mixture of 1.071 g of Na2CO3, 1.993 g of BaCO3, 8.162 g of Fe(NO3)3.9H2O, 4.002 g of (NH4)2HPO4 and 1.454 g of MoO3 was dissolved in nitric acid and the obtained solution was evaporated to dryness. The dry residue was transferred into a platinum crucible and then heated up 600°C to decompose H2O and NH3. In a second step, the sample was melted for 1 h at 900°C and then cooled down to room temperature with a 10° h-1 rate. The final product, obtained after washing with warm water to dissolve the flux is essentially composed of pink and prismatic shaped crystals. Their qualitative elemental analysis using electron microprobe analysis indicated the presence of Na, Ba, Fe and P and no impurity elements have been detected.

Refinement

The Ba and Fe atoms were located by direct methods and the remaining atoms were found by successive difference Fourier maps. All atomic positions were refined anisotropically.

Figures

Fig. 1.
A projection of the structure along the [111] direction.
Fig. 2.
The environments of the Na and Ba sites showing the anisotropic atomic displacements at the 50% level.

Crystal data

NaBaFe2(PO4)3Z = 4
Mr = 556.94F000 = 1040
Cubic, P213Dx = 3.935 Mg m3
Hall symbol: P 2ac 2ab 3Mo Kα radiation λ = 0.71073 Å
a = 9.796 (1) ÅCell parameters from 25 reflections
b = 9.796 (1) Åθ = 9.0–13.0º
c = 9.796 (1) ŵ = 7.82 mm1
α = 90ºT = 293 (2) K
β = 90ºPrism, pink
γ = 90º0.1 × 0.1 × 0.1 mm
V = 940.1 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.082
Radiation source: fine-focus sealed tubeθmax = 29.9º
Monochromator: graphiteθmin = 2.9º
T = 293(2) Kh = −1→13
ω/2θ scansk = −1→13
Absorption correction: ψ scan(North et al., 1968)l = −1→13
Tmin = 0.35, Tmax = 0.462 standard reflections
2114 measured reflections every 120 min
657 independent reflections intensity decay: 1%
644 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + 5.7579P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.002
wR(F2) = 0.059Δρmax = 0.57 e Å3
S = 0.92Δρmin = −0.49 e Å3
657 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
70 parametersExtinction coefficient: 0.0145 (15)
4 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Na10.9427 (12)0.9427 (12)0.9427 (12)0.0144 (3)0.4738 (16)
Ba10.92953 (9)0.92953 (9)0.92953 (9)0.0144 (3)0.5262 (16)
Na20.6862 (8)0.6862 (8)0.6862 (8)0.0232 (4)0.5262 (16)
Ba20.70555 (8)0.70555 (8)0.70555 (8)0.0232 (4)0.4738 (16)
Fe10.35313 (6)0.85313 (6)0.64687 (6)0.0104 (2)
Fe20.91362 (6)0.08638 (6)0.58638 (6)0.0101 (2)
P0.03742 (10)0.77099 (11)0.62578 (10)0.0068 (2)
O10.9926 (5)0.9134 (4)0.6562 (7)0.0461 (14)
O20.9463 (5)0.6999 (6)0.5243 (5)0.0440 (13)
O30.1846 (4)0.7653 (6)0.5752 (5)0.0368 (12)
O4A0.0112 (7)0.6985 (10)0.7629 (8)0.0389 (18)0.701 (4)
O4B0.0527 (17)0.672 (2)0.738 (2)0.0389 (18)0.299 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Na10.0144 (3)0.0144 (3)0.0144 (3)−0.0019 (3)−0.0019 (3)−0.0019 (3)
Ba10.0144 (3)0.0144 (3)0.0144 (3)−0.0019 (3)−0.0019 (3)−0.0019 (3)
Na20.0232 (4)0.0232 (4)0.0232 (4)0.0016 (3)0.0016 (3)0.0016 (3)
Ba20.0232 (4)0.0232 (4)0.0232 (4)0.0016 (3)0.0016 (3)0.0016 (3)
Fe10.0104 (2)0.0104 (2)0.0104 (2)0.0001 (2)−0.0001 (2)−0.0001 (2)
Fe20.0101 (2)0.0101 (2)0.0101 (2)0.0024 (2)0.0024 (2)−0.0024 (2)
P0.0066 (4)0.0073 (4)0.0064 (4)−0.0005 (3)−0.0028 (3)0.0010 (3)
O10.045 (3)0.0170 (19)0.076 (4)0.0191 (19)−0.015 (3)−0.015 (2)
O20.029 (2)0.061 (3)0.042 (3)0.003 (2)−0.025 (2)−0.031 (2)
O30.0120 (16)0.063 (3)0.035 (2)−0.0091 (18)0.0085 (16)−0.023 (2)
O4A0.020 (4)0.066 (5)0.031 (3)0.020 (3)0.015 (3)0.040 (3)
O4B0.020 (4)0.066 (5)0.031 (3)0.020 (3)0.015 (3)0.040 (3)

Geometric parameters (Å, °)

Na1—O1i2.864 (12)Ba2—O3xiii2.772 (5)
Na1—O12.864 (12)Ba2—O3xiv2.772 (5)
Na1—O1ii2.864 (12)Ba2—O2ii2.952 (5)
Na1—O4Biii2.86 (3)Ba2—O22.952 (5)
Na1—O4Biv2.86 (3)Ba2—O2i2.952 (5)
Na1—O4Bv2.86 (3)Ba2—O4Avi3.047 (7)
Na1—O4Avi3.045 (17)Ba2—O4Avii3.047 (7)
Na1—O4Avii3.045 (17)Ba2—O4Aviii3.047 (7)
Na1—O4Aviii3.045 (17)Fe1—O2ii1.979 (4)
Na1—O2ix2.763 (17)Fe1—O2xv1.979 (4)
Na1—O2x2.763 (17)Fe1—O2xvi1.979 (4)
Na1—O2xi2.763 (17)Fe1—O3xiii1.990 (4)
Ba1—O1i2.753 (7)Fe1—O31.990 (4)
Ba1—O12.753 (7)Fe1—O3xvii1.990 (4)
Ba1—O1ii2.753 (7)Fe1—Ba1xviii3.6878 (19)
Ba1—O4Biii2.89 (3)Fe1—Ba2iv3.7867 (6)
Ba1—O4Biv2.89 (3)Fe1—Ba2xv3.7867 (6)
Ba1—O4Bv2.89 (3)Fe2—O4Bxix1.946 (18)
Ba1—O4Avi2.902 (10)Fe2—O4Bii1.946 (18)
Ba1—O4Avii2.902 (10)Fe2—O4Bxii1.946 (18)
Ba1—O4Aviii2.902 (10)Fe2—O1xx1.984 (5)
Ba1—O2ix2.950 (6)Fe2—O1xxi1.984 (5)
Ba1—O2x2.950 (6)Fe2—O1xxii1.984 (5)
Ba1—O2xi2.950 (6)Fe2—O4Axix1.982 (7)
Na2—O3xii2.604 (8)Fe2—O4Aii1.982 (7)
Na2—O3xiii2.604 (8)Fe2—O4Axii1.982 (7)
Na2—O3xiv2.604 (8)P—O4B1.470 (18)
Na2—O23.004 (6)P—O1xxiii1.493 (4)
Na2—O2i3.004 (6)P—O2xxiii1.506 (4)
Na2—O2ii3.004 (6)P—O31.526 (4)
Ba2—O3xii2.772 (5)P—O4A1.541 (7)
O1i—Na1—O194.9 (5)O2ix—Ba1—O2xi55.17 (13)
O1i—Na1—O1ii94.9 (5)O2x—Ba1—O2xi55.17 (13)
O1—Na1—O1ii94.9 (5)O3xii—Na2—O3xiii100.1 (3)
O1i—Na1—O4Biii58.0 (4)O3xii—Na2—O3xiv100.1 (3)
O1—Na1—O4Biii79.6 (4)O3xiii—Na2—O3xiv100.1 (3)
O1ii—Na1—O4Biii151.3 (7)O3xii—Na2—O283.46 (16)
O1i—Na1—O4Biv151.3 (7)O3xiii—Na2—O2158.5 (4)
O1—Na1—O4Biv58.0 (4)O3xiv—Na2—O258.53 (12)
O1ii—Na1—O4Biv79.6 (4)O3xii—Na2—O2i58.53 (12)
O4Biii—Na1—O4Biv118.89 (19)O3xiii—Na2—O2i83.46 (16)
O1i—Na1—O4Bv79.6 (4)O3xiv—Na2—O2i158.5 (4)
O1—Na1—O4Bv151.3 (7)O2—Na2—O2i115.68 (18)
O1ii—Na1—O4Bv58.0 (4)O3xii—Na2—O2ii158.5 (4)
O4Biii—Na1—O4Bv118.89 (19)O3xiii—Na2—O2ii58.53 (12)
O4Biv—Na1—O4Bv118.89 (19)O3xiv—Na2—O2ii83.46 (16)
O1i—Na1—O4Avi46.9 (2)O2—Na2—O2ii115.68 (18)
O1—Na1—O4Avi107.0 (6)O2i—Na2—O2ii115.68 (18)
O1ii—Na1—O4Avi49.5 (3)O3xii—Ba2—O3xiii92.09 (15)
O1i—Na1—O4Avii49.5 (3)O3xii—Ba2—O3xiv92.09 (15)
O1—Na1—O4Avii46.9 (2)O3xiii—Ba2—O3xiv92.09 (15)
O1ii—Na1—O4Avii107.0 (6)O3xii—Ba2—O2ii148.54 (14)
O1i—Na1—O4Aviii107.0 (6)O3xiii—Ba2—O2ii57.63 (12)
O1—Na1—O4Aviii49.5 (3)O3xiv—Ba2—O2ii81.64 (14)
O1ii—Na1—O4Aviii46.9 (2)O3xii—Ba2—O281.64 (14)
O4Avi—Na1—O4Aviii81.1 (5)O3xiii—Ba2—O2148.54 (14)
O4Avii—Na1—O4Aviii81.1 (5)O3xiv—Ba2—O257.63 (12)
O1i—Na1—O2ix97.97 (19)O2ii—Ba2—O2118.95 (3)
O1—Na1—O2ix104.0 (2)O3xii—Ba2—O2i57.63 (12)
O1ii—Na1—O2ix156.0 (6)O3xiii—Ba2—O2i81.64 (14)
O4Biv—Na1—O2ix97.9 (6)O3xiv—Ba2—O2i148.54 (14)
O4Bv—Na1—O2ix104.6 (6)O2ii—Ba2—O2i118.95 (3)
O4Avi—Na1—O2ix134.2 (2)O2—Ba2—O2i118.95 (3)
O4Avii—Na1—O2ix96.81 (16)O3xii—Ba2—O4Avi104.95 (16)
O4Aviii—Na1—O2ix144.2 (3)O3xiii—Ba2—O4Avi83.7 (2)
O1i—Na1—O2x156.0 (6)O3xiv—Ba2—O4Avi162.54 (16)
O1—Na1—O2x97.97 (19)O2ii—Ba2—O4Avi81.80 (17)
O1ii—Na1—O2x104.0 (2)O2—Ba2—O4Avi127.8 (2)
O4Biii—Na1—O2x104.6 (6)O2i—Ba2—O4Avi47.59 (16)
O4Biv—Na1—O2x49.4 (4)O3xii—Ba2—O4Avii83.7 (2)
O4Bv—Na1—O2x97.9 (6)O3xiii—Ba2—O4Avii162.54 (16)
O4Avi—Na1—O2x144.2 (3)O3xiv—Ba2—O4Avii104.95 (16)
O4Avii—Na1—O2x134.2 (2)O2ii—Ba2—O4Avii127.8 (2)
O4Aviii—Na1—O2x96.81 (16)O2—Ba2—O4Avii47.59 (16)
O2ix—Na1—O2x59.2 (4)O2i—Ba2—O4Avii81.80 (17)
O1i—Na1—O2xi104.0 (2)O4Avi—Ba2—O4Avii81.1 (3)
O1—Na1—O2xi156.0 (6)O3xii—Ba2—O4Aviii162.54 (17)
O1ii—Na1—O2xi97.97 (19)O3xiii—Ba2—O4Aviii104.95 (16)
O4Biii—Na1—O2xi97.9 (6)O3xiv—Ba2—O4Aviii83.7 (2)
O4Biv—Na1—O2xi104.6 (6)O2ii—Ba2—O4Aviii47.59 (16)
O4Avi—Na1—O2xi96.81 (16)O2—Ba2—O4Aviii81.80 (17)
O4Avii—Na1—O2xi144.2 (3)O2i—Ba2—O4Aviii127.8 (2)
O4Aviii—Na1—O2xi134.2 (2)O4Avi—Ba2—O4Aviii81.1 (3)
O2ix—Na1—O2xi59.2 (4)O4Avii—Ba2—O4Aviii81.1 (3)
O2x—Na1—O2xi59.2 (4)O2ii—Fe1—O2xv87.3 (2)
O1i—Ba1—O1100.10 (14)O2ii—Fe1—O2xvi87.3 (2)
O1i—Ba1—O1ii100.10 (14)O2xv—Fe1—O2xvi87.3 (2)
O1—Ba1—O1ii100.10 (14)O2ii—Fe1—O3xiii88.26 (18)
O1i—Ba1—O4Biii58.8 (4)O2xv—Fe1—O3xiii89.2 (2)
O1—Ba1—O4Biii80.9 (4)O2xvi—Fe1—O3xiii174.5 (2)
O1ii—Ba1—O4Biii158.5 (4)O2ii—Fe1—O3174.5 (2)
O1i—Ba1—O4Biv158.5 (4)O2xv—Fe1—O388.26 (18)
O1—Ba1—O4Biv58.8 (4)O2xvi—Fe1—O389.2 (2)
O1ii—Ba1—O4Biv80.9 (4)O3xiii—Fe1—O395.0 (2)
O4Biii—Ba1—O4Biv116.8 (2)O2ii—Fe1—O3xvii89.2 (2)
O1i—Ba1—O4Bv80.9 (4)O2xv—Fe1—O3xvii174.5 (2)
O1—Ba1—O4Bv158.5 (4)O2xvi—Fe1—O3xvii88.26 (18)
O1ii—Ba1—O4Bv58.8 (4)O3xiii—Fe1—O3xvii95.0 (2)
O4Biii—Ba1—O4Bv116.8 (2)O3—Fe1—O3xvii95.0 (2)
O4Biv—Ba1—O4Bv116.8 (2)O4Bxix—Fe2—O4Bii80.8 (9)
O1i—Ba1—O4Avi49.19 (16)O4Bxix—Fe2—O4Bxii80.8 (9)
O1—Ba1—O4Avi114.25 (19)O4Bii—Fe2—O4Bxii80.8 (9)
O1ii—Ba1—O4Avi51.94 (17)O4Bxix—Fe2—O1xx169.5 (6)
O1i—Ba1—O4Avii51.94 (17)O4Bii—Fe2—O1xx89.8 (8)
O1—Ba1—O4Avii49.19 (16)O4Bxii—Fe2—O1xx93.0 (5)
O1ii—Ba1—O4Avii114.25 (19)O4Bxix—Fe2—O1xxi93.0 (5)
O1i—Ba1—O4Aviii114.25 (19)O4Bii—Fe2—O1xxi169.5 (6)
O1—Ba1—O4Aviii51.94 (17)O4Bxii—Fe2—O1xxi89.8 (8)
O1ii—Ba1—O4Aviii49.19 (16)O1xx—Fe2—O1xxi95.5 (3)
O4Avi—Ba1—O4Aviii86.1 (2)O4Bxix—Fe2—O1xxii89.8 (8)
O4Avii—Ba1—O4Aviii86.1 (2)O4Bii—Fe2—O1xxii93.0 (5)
O1i—Ba1—O2ix96.20 (14)O4Bxii—Fe2—O1xxii169.5 (6)
O1—Ba1—O2ix102.04 (15)O1xx—Fe2—O1xxii95.5 (3)
O1ii—Ba1—O2ix149.64 (14)O1xxi—Fe2—O1xxii95.5 (3)
O4Biii—Ba1—O2ix47.5 (4)O1xx—Fe2—O4Axix168.6 (3)
O4Biv—Ba1—O2ix93.1 (4)O1xxi—Fe2—O4Axix77.4 (3)
O4Bv—Ba1—O2ix99.2 (4)O1xxii—Fe2—O4Axix94.1 (3)
O4Avi—Ba1—O2ix132.27 (18)O4Bxix—Fe2—O4Aii78.2 (6)
O4Avii—Ba1—O2ix95.97 (17)O4Bii—Fe2—O4Aii15.9 (5)
O4Aviii—Ba1—O2ix141.66 (18)O4Bxii—Fe2—O4Aii95.9 (8)
O1i—Ba1—O2x149.64 (14)O1xx—Fe2—O4Aii94.1 (3)
O1—Ba1—O2x96.20 (14)O1xxi—Fe2—O4Aii168.6 (3)
O1ii—Ba1—O2x102.04 (15)O1xxii—Fe2—O4Aii77.4 (3)
O4Biii—Ba1—O2x99.2 (4)O4Axix—Fe2—O4Aii94.0 (3)
O4Biv—Ba1—O2x47.5 (4)O1xx—Fe2—O4Axii77.4 (3)
O4Bv—Ba1—O2x93.1 (4)O1xxi—Fe2—O4Axii94.1 (3)
O4Avi—Ba1—O2x141.66 (18)O1xxii—Fe2—O4Axii168.6 (3)
O4Avii—Ba1—O2x132.27 (18)O4Axix—Fe2—O4Axii94.0 (3)
O4Aviii—Ba1—O2x95.97 (17)O4Aii—Fe2—O4Axii94.0 (3)
O2ix—Ba1—O2x55.17 (13)O4B—P—O1xxiii119.9 (10)
O1i—Ba1—O2xi102.04 (15)O4B—P—O2xxiii104.3 (11)
O1—Ba1—O2xi149.64 (14)O1xxiii—P—O2xxiii112.9 (3)
O1ii—Ba1—O2xi96.20 (14)O4B—P—O397.0 (6)
O4Biii—Ba1—O2xi93.1 (4)O1xxiii—P—O3112.2 (3)
O4Biv—Ba1—O2xi99.2 (4)O2xxiii—P—O3109.2 (3)
O4Bv—Ba1—O2xi47.5 (4)O4B—P—O4A20.6 (6)
O4Avi—Ba1—O2xi95.97 (16)O1xxiii—P—O4A102.0 (4)
O4Avii—Ba1—O2xi141.66 (18)O2xxiii—P—O4A105.3 (4)
O4Aviii—Ba1—O2xi132.27 (18)O3—P—O4A115.1 (3)

Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) y+1/2, −z+3/2, −x+1; (iv) −x+1, y+1/2, −z+3/2; (v) −z+3/2, −x+1, y+1/2; (vi) y, z, x+1; (vii) x+1, y, z; (viii) z, x+1, y; (ix) y+1/2, −z+3/2, −x+2; (x) −x+2, y+1/2, −z+3/2; (xi) −z+3/2, −x+2, y+1/2; (xii) −y+3/2, −z+1, x+1/2; (xiii) −z+1, x+1/2, −y+3/2; (xiv) x+1/2, −y+3/2, −z+1; (xv) x−1/2, −y+3/2, −z+1; (xvi) −y+1, z+1/2, −x+3/2; (xvii) y−1/2, −z+3/2, −x+1; (xviii) −x+3/2, −y+2, z−1/2; (xix) −x+1, y−1/2, −z+3/2; (xx) −z+3/2, −x+1, y−1/2; (xxi) −y+2, z−1/2, −x+3/2; (xxii) x, y−1, z; (xxiii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2076).

References

  • Battle, P. D., Cheetham, A. K., Harrison, W. T. A. & Long, G. J. (1986). J. Solid State Chem.62, 16–25.
  • Battle, P. D., Gibb, T. C., Nixon, S. & Harrison, W. T. A. (1988). J. Solid State Chem.75, 21–29.
  • Baur, W. H. (1974). Acta Cryst. B30, 1195–1215.
  • Brandenburg, K. (1998). DIAMOND University of Bonn, Germany.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Moffat, J. B. (1978). Catal. Rev. Sci. Eng.18, 199–258.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Padhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc.144, 1188–1194.
  • Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zemann, A. & Zemann, J. (1957). Acta Cryst.10, 409–413.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography