PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): i49.
Published online 2008 July 19. doi:  10.1107/S1600536808021818
PMCID: PMC2961904

Poly[μ2-hydroxido-μ4-sulfato-neodym­ium(III)]

Abstract

The title compound, [Nd(OH)(SO4)]n, was obtained hydro­thermally from an aqueous solution of neodymium nitrate, 1,2-propane­diamine and sulfuric acid. The structure features nona­coordinated neodymium with sulfate and hydroxide anions acting as bridging ligands. The OH group forms a weak O—H(...)O hydrogen bond with an O(...)O distance of 3.224 (5) Å.

Related literature

For related literature, see: Doran et al. (2002 [triangle]); Xu, Ding, Zhou & Liu (2006 [triangle]); Xu, Ding, Feng et al. (2006 [triangle]); Xu et al. (2007 [triangle]); Yuan et al. (2004 [triangle]); Zhang et al. (2004 [triangle]); Ding et al. (2006 [triangle]).

Experimental

Crystal data

  • [Nd(OH)(SO4)]
  • M r = 257.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i49-efi1.jpg
  • a = 4.4678 (9) Å
  • b = 12.432 (2) Å
  • c = 6.8575 (13) Å
  • β = 106.324 (3)°
  • V = 365.53 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 14.66 mm−1
  • T = 293 (2) K
  • 0.10 × 0.08 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.322, T max = 0.473 (expected range = 0.282–0.415)
  • 1837 measured reflections
  • 675 independent reflections
  • 669 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.056
  • S = 1.24
  • 675 reflections
  • 67 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −2.27 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021818/br2079sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021818/br2079Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Zhang for help with the structural analysis.

supplementary crystallographic information

Comment

In the last few years, the synthesis of new three dimensional lanthanide sulfates have received great attention, due to their functional applications in catalysis, ion-exchange, and optical device (Zhang et al.,2004; Yuan et al., 2004; Xu, Ding, Feng et al., 2006; Xu, Ding, Zhou & Liu, 2006; Doran et al., 2002, Xu et al., 2007). In this work, we designed and synthesized the title compound, neodymium(3+) sulfate hydroxide, which features a three–dimensional framework constructed from NdO9 polyhedra and SO4 tetrahedra.

Nd(SO4)(OH) is isostructural with La(SO4)(OH) (Zhang et al.,2004) and Eu(SO4)(OH)(Ding et al.,2006), the framework of title compound constructed from NdO9 polyhedra and SO4 tetrahedra. As show in Fig. 1, the asymmetric unit contains one Nd3+, one SO42– group and one hydroxide group. The Nd3+ is coordinated by six bridging sulfate ions, each S atom makes four S–O–Nd linkages by sharing the bridging O atoms. The coordination sphere of Nd is completed by three OH- groups, which act as briding ligands between three Nd^3+^.

The O-H group is involved hydrogen bonding interactions with O1, O2 and O4, the distances of O—H···O are vary from 2.60 (2) to 2.90 (2) Å.

The Nd —O distances are between of 2.374 (4)– 2.800 (4)Å (Table 1)while the O—Nd—O angles are between 66.02 (13) and 141.55 (12)°. These bond distances and bond angles are in agreement with those found in the reported rare-earth compounds (Zhang et al.,2004; Ding et al.,2006). The bond distances of S—O and angles of O—S—O are unexceptional. Fig. 2 shows the three-dimensional arrangement in the unit cell, displaying the way the different Nd3+ are connected by bridging hydroxide and sulfates groups.

Experimental

Pink block crystals were synthesized hydrothermally from a mixture of Nd(NO3)3.6H2O, 1,2-propane diamine, H2SO4 and water. In a typical synthesis, Nd(NO3)3.6H2O (0.6066 g) was dissolved in a mixture of 1,2-propane diamine (0.2205 g) and water (3.2 ml) followed by the addition of H2SO4 (98%) (0.3093 g) with constant stirring. Finally, the mixture was kept in a 25 ml Teflon-lined steel autoclave at 180 °C for 7 days. After the autoclave was slowly cooled to room temperature, Pink block crystals of the title compound were obtained.

Refinement

The H atom of water was located from difference map, while the distance of O—H was restrained as 0.85 (2) Å.

Figures

Fig. 1.
The molecular structure for title compound. Displacement ellipsoids at the 50% probability level.
Fig. 2.
The crystal packing in the unit cell of Nd(SO4)(OH).

Crystal data

[Nd(OH)(SO4)]F000 = 468
Mr = 257.31Dx = 4.676 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 150 reflections
a = 4.4678 (9) Åθ = 2.3–22.5º
b = 12.432 (2) ŵ = 14.66 mm1
c = 6.8575 (13) ÅT = 293 (2) K
β = 106.324 (3)ºBlock, pink
V = 365.53 (12) Å30.10 × 0.08 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer675 independent reflections
Radiation source: fine-focus sealed tube669 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.013
T = 293(2) Kθmax = 25.5º
ω scansθmin = 3.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −3→5
Tmin = 0.322, Tmax = 0.473k = −14→15
1837 measured reflectionsl = −7→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056  w = 1/[σ2(Fo2) + (0.035P)2 + 0.7631P] where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max = 0.001
675 reflectionsΔρmax = 0.56 e Å3
67 parametersΔρmin = −2.27 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Nd10.14116 (6)0.93569 (2)0.80136 (4)0.00655 (15)
S10.4852 (3)0.85400 (10)0.38900 (18)0.0059 (3)
O10.3672 (9)0.8343 (3)0.5628 (6)0.0136 (8)
O20.2485 (9)0.9040 (3)0.2196 (6)0.0127 (8)
O30.7563 (9)0.9295 (3)0.4498 (6)0.0105 (8)
O40.5923 (9)0.7539 (3)0.3200 (6)0.0129 (8)
O50.3028 (9)1.0847 (3)1.0385 (6)0.0081 (7)
H10.295 (14)1.148 (2)0.997 (9)0.010*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Nd10.0075 (2)0.0051 (2)0.0073 (2)0.00001 (8)0.00245 (14)−0.00073 (8)
S10.0073 (6)0.0040 (6)0.0068 (6)0.0003 (4)0.0026 (5)−0.0001 (4)
O10.0172 (19)0.0129 (19)0.0136 (19)0.0013 (16)0.0093 (16)0.0003 (15)
O20.0096 (18)0.0133 (18)0.0131 (18)0.0026 (16)−0.0002 (15)0.0032 (15)
O30.0088 (19)0.008 (2)0.015 (2)−0.0023 (13)0.0036 (16)−0.0004 (13)
O40.0196 (19)0.0066 (19)0.015 (2)0.0037 (15)0.0092 (17)−0.0002 (14)
O50.0080 (18)0.0034 (16)0.0122 (18)0.0005 (14)0.0016 (14)0.0027 (14)

Geometric parameters (Å, °)

Nd1—O4i2.374 (4)S1—O11.453 (4)
Nd1—O5ii2.431 (4)S1—O41.459 (4)
Nd1—O52.437 (4)S1—O21.470 (4)
Nd1—O12.492 (4)S1—O31.496 (4)
Nd1—O3iii2.535 (4)O2—Nd1vi2.624 (4)
Nd1—O5iv2.536 (4)O2—Nd1viii2.800 (4)
Nd1—O3v2.538 (4)O3—Nd1iii2.535 (4)
Nd1—O2vi2.624 (4)O3—Nd1ix2.538 (4)
Nd1—O2vii2.800 (4)O4—Nd1x2.374 (4)
Nd1—Nd1iv3.6744 (7)O5—Nd1ii2.431 (4)
Nd1—Nd1ii3.9178 (7)O5—Nd1iv2.536 (4)
O4i—Nd1—O5ii88.26 (13)O4i—Nd1—Nd1iv109.65 (10)
O4i—Nd1—O5137.19 (13)O5ii—Nd1—Nd1iv103.34 (9)
O5ii—Nd1—O572.81 (14)O5—Nd1—Nd1iv43.41 (9)
O4i—Nd1—O166.02 (13)O1—Nd1—Nd1iv173.45 (9)
O5ii—Nd1—O172.10 (13)O3iii—Nd1—Nd1iv112.42 (8)
O5—Nd1—O1136.35 (13)O5iv—Nd1—Nd1iv41.33 (8)
O4i—Nd1—O3iii136.85 (12)O3v—Nd1—Nd1iv115.79 (9)
O5ii—Nd1—O3iii91.10 (13)O2vi—Nd1—Nd1iv49.41 (8)
O5—Nd1—O3iii82.80 (13)O2vii—Nd1—Nd1iv45.37 (8)
O1—Nd1—O3iii72.80 (12)O4i—Nd1—Nd1ii115.94 (9)
O4i—Nd1—O5iv77.43 (13)O5ii—Nd1—Nd1ii36.45 (9)
O5ii—Nd1—O5iv128.19 (16)O5—Nd1—Nd1ii36.35 (9)
O5—Nd1—O5iv84.74 (13)O1—Nd1—Nd1ii105.03 (9)
O1—Nd1—O5iv138.09 (13)O3iii—Nd1—Nd1ii86.21 (9)
O3iii—Nd1—O5iv132.32 (12)O5iv—Nd1—Nd1ii109.06 (9)
O4i—Nd1—O3v88.46 (12)O3v—Nd1—Nd1ii151.19 (8)
O5ii—Nd1—O3v139.42 (13)O2vi—Nd1—Nd1ii97.41 (9)
O5—Nd1—O3v130.63 (11)O2vii—Nd1—Nd1ii58.27 (8)
O1—Nd1—O3v69.68 (13)Nd1iv—Nd1—Nd1ii72.017 (16)
O3iii—Nd1—O3v65.06 (14)O1—S1—O4110.5 (2)
O5iv—Nd1—O3v90.27 (13)O1—S1—O2111.9 (2)
O4i—Nd1—O2vi133.45 (13)O4—S1—O2109.4 (2)
O5ii—Nd1—O2vi133.02 (12)O1—S1—O3109.2 (2)
O5—Nd1—O2vi61.74 (12)O4—S1—O3108.2 (2)
O1—Nd1—O2vi137.14 (12)O2—S1—O3107.5 (2)
O3iii—Nd1—O2vi72.81 (13)S1—O1—Nd1139.5 (2)
O5iv—Nd1—O2vi60.80 (12)S1—O2—Nd1vi133.1 (2)
O3v—Nd1—O2vi73.07 (12)S1—O2—Nd1viii138.3 (2)
O4i—Nd1—O2vii78.28 (12)Nd1vi—O2—Nd1viii85.22 (11)
O5ii—Nd1—O2vii70.32 (12)S1—O3—Nd1iii120.8 (2)
O5—Nd1—O2vii59.36 (12)S1—O3—Nd1ix124.3 (2)
O1—Nd1—O2vii128.08 (12)Nd1iii—O3—Nd1ix114.94 (14)
O3iii—Nd1—O2vii141.03 (12)S1—O4—Nd1x155.2 (3)
O5iv—Nd1—O2vii58.11 (12)Nd1ii—O5—Nd1107.19 (14)
O3v—Nd1—O2vii147.55 (12)Nd1ii—O5—Nd1iv128.19 (16)
O2vi—Nd1—O2vii94.78 (11)Nd1—O5—Nd1iv95.26 (12)

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+2, −z+2; (v) x−1, y, z; (vi) −x, −y+2, −z+1; (vii) x, y, z+1; (viii) x, y, z−1; (ix) x+1, y, z; (x) x+1/2, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1···O1xi0.83 (3)2.43 (3)3.224 (5)160 (6)

Symmetry codes: (xi) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2079).

References

  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconson, USA.
  • Ding, S.-H., Sun, X.-C., Zhu, Y.-L., Chen, Q. & Xu, Y. (2006). Acta Cryst. E62, i269–i271.
  • Doran, M., Norquist, A. & O’Hare, D. (2002). Chem. Commun pp. 2946–2947. [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, Y., Ding, S.-H., Feng, W.-J., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, i147–i149.
  • Xu, Y., Ding, S. & Zheng, X. (2007). J. Solid State Chem.2180, 2020–2025.
  • Xu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749–m1750.
  • Yuan, Y., Song, J. & Mao, J. (2004). Inorg. Chem. Commun.7, 24–26.
  • Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun.7, 889–892.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography