PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): i48.
Published online 2008 July 19. doi:  10.1107/S1600536808021995
PMCID: PMC2961903

A new polymorph of Lu(PO3)3

Abstract

A new polymorph of lutetium polyphosphate, Lu(PO3)3, was found to be isotypic with the trigonal form of Yb(PO3)3. Two of the three Lu atoms occupy special positions (Wyckoff positions 3a and 3b, site symmetry An external file that holds a picture, illustration, etc.
Object name is e-64-00i48-efi13.jpg). The atomic arrangement consists of infinite helical polyphosphate chains running along the c axis, with a repeat period of 12 PO4 tetra­hedra, joined with LuO6 octa­hedra.

Related literature

For syntheses and optical properties, see: Briche et al. (2006 [triangle]); Jouini, Férid, Gacon, Grosvalet et al. (2003 [triangle]); Jouini, Férid, Gacon & Trabelsi-Ayadi (2003 [triangle]); Ternane et al. (2005 [triangle]); Graia et al. (2003 [triangle]); Anisimova et al. (1992 [triangle]). For the monoclinic polymorph of Lu(PO3)3, see: Höppe & Sedlmaier (2007 [triangle]); Yuan et al. (2008 [triangle]).

Experimental

Crystal data

  • Lu(PO3)3
  • M r = 411.88
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-64-00i48-efi14.jpg
  • a = 20.9106 (6) Å
  • c = 12.0859 (7) Å
  • V = 4576.6 (3) Å3
  • Z = 24
  • Mo Kα radiation
  • μ = 13.59 mm−1
  • T = 100 (2) K
  • 0.18 × 0.18 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.102, T max = 0.104
  • 25139 measured reflections
  • 4170 independent reflections
  • 3609 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.060
  • S = 1.05
  • 4170 reflections
  • 159 parameters
  • Δρmax = 2.34 e Å−3
  • Δρmin = −2.07 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2001 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021995/fi2065sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021995/fi2065Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

There is considerable scientific and technological interest in the synthesis, structure, and properties of yttrium and rare earth polyphosphates of the formula Ln(PO3)3, because these compounds offer thermal stability and richness of formulations and structures (Briche et al., 2006, Jouini, Férid, Gacon, Grosvalet et al., 2003, Jouini, Férid, Gacon & Trabelsi-Ayadi, 2003, Ternane et al., 2005, Graia et al., 2003). In this paper, we report the preparation and crystal structure refinement of the polyphosphate Lu(PO3)3, crystallizing in space group R-3 . The existence of the trigonal polymorph was originally reported by Anisimova for the Yb(PO3)3 polyphosphate (Anisimova et al., 1992). The monoclinic polymorph of Lu(PO3)3 was recently reported by Höppe and Yuan (Höppe & Sedlmaier, 2007, Yuan et al., 2008). The atomic arrangement of these structures is characterized by a three-dimensional framework built of (PO3)n chains that are formed by corner-sharing of PO4 tetrahedra. These two polymorphs differ by the polyphosphate chains configuration. The chains that were observed in monoclinic Lu(PO3)3 form infinite zigzag chains (PO3)n that extend along c with a period of six tetrahedra. In trigonal Lu(PO3)3, the (PO3)n chains are helical with a period of 12 tetrahedra (Fig.1) and are arranged about the 31 helical axis. The chains are joined to each other by LuO6 octahedra (Fig 2.), no oxygen atom is shared between adjacent LuO6 octahedra. Figure 3 shows the projection of Lu(PO3)3 with anisotropic displacement parameters drawn at the 50% probability level.

Experimental

Single crystals of Lu(PO3)3 were grown by a flux method. Lutetium oxide was dissolved in an excess of phosphoric acid using the molar ratio Lu:P = 1:20. The resulting solution was heated in a vitreous graphite crucible at 573 K for 5 days. The obtained colourless crystals were then isolated from the acid solution using hot water.

Refinement

The highest peak and the deepest hole are located 0.75Å and 0.57 Å, respectively from O10 and Lu3.

Figures

Fig. 1.
A projection of the helical (PO3)n chains along b.
Fig. 2.
A projection of Lu(PO3)3 along c, showing the arrangement of the LuO6 octahedra and PO4 tetrahedra.
Fig. 3.
Projection of the Lu(PO3)3 polyphosphate, showing the lutetium coordination with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes : (i) -y, x-y, z; (ii) -x+y, -x, z; (iii)-x+1/3, -y+2/3, -z+2/3; (iv) y+1/3, -x+y+2/3, -z+2/3; ...

Crystal data

Lu(PO3)3Z = 24
Mr = 411.88F000 = 4512
Trigonal, R3Dx = 3.587 Mg m3
Hall symbol: -R 3Mo Kα radiation λ = 0.71073 Å
a = 20.9106 (6) ÅCell parameters from 25 reflections
b = 20.9106 (6) Åθ = 2.8–34.1º
c = 12.0859 (7) ŵ = 13.59 mm1
α = 90ºT = 100 (2) K
β = 90ºCube, colourless
γ = 120º0.18 × 0.18 × 0.17 mm
V = 4576.6 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3609 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.054
T = 100(2) Kθmax = 34.2º
ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −32→32
Tmin = 0.102, Tmax = 0.104k = −32→32
25139 measured reflectionsl = −18→18
4170 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0212P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.061Δρmax = 2.34 e Å3
S = 1.05Δρmin = −2.07 e Å3
4170 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
159 parametersExtinction coefficient: 0.000061 (8)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Lu10.66670.33330.33330.00741 (8)
Lu20.66670.3333−0.16670.01207 (9)
Lu30.440661 (9)0.365196 (10)0.096806 (14)0.00780 (5)
P10.63820 (6)0.45920 (6)0.16119 (9)0.00821 (19)
P20.50313 (6)0.54494 (6)0.16810 (9)0.0096 (2)
P30.39267 (6)0.30556 (6)0.37383 (10)0.0111 (2)
P40.50120 (6)0.25039 (6)−0.01904 (10)0.0107 (2)
O10.44368 (17)0.46669 (17)0.1552 (3)0.0132 (6)
O20.34108 (18)0.22020 (17)0.3991 (3)0.0132 (6)
O30.54706 (18)0.58558 (18)0.0709 (3)0.0141 (6)
O40.45503 (18)0.27392 (18)0.0416 (3)0.0168 (7)
O50.55847 (17)0.42399 (18)0.1374 (3)0.0175 (7)
O60.45659 (17)0.19780 (19)−0.1185 (3)0.0155 (7)
O70.66627 (18)0.41823 (18)0.2253 (3)0.0190 (7)
O80.57293 (19)0.3097 (2)−0.0609 (3)0.0247 (8)
O90.6655 (2)0.5377 (2)0.2137 (4)0.0351 (11)
O100.5156 (2)0.1948 (2)0.0471 (3)0.0315 (10)
O110.3569 (2)0.3473 (2)0.4088 (4)0.0298 (9)
O120.4182 (3)0.3127 (2)0.2586 (3)0.0364 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Lu10.00684 (11)0.00684 (11)0.00854 (19)0.00342 (6)0.0000.000
Lu20.01014 (13)0.01014 (13)0.0159 (2)0.00507 (6)0.0000.000
Lu30.00810 (8)0.00796 (8)0.00662 (8)0.00347 (7)0.00035 (6)0.00000 (6)
P10.0086 (5)0.0070 (5)0.0084 (5)0.0034 (4)−0.0005 (4)−0.0006 (4)
P20.0133 (5)0.0095 (5)0.0072 (5)0.0065 (4)−0.0008 (4)−0.0007 (4)
P30.0150 (5)0.0121 (5)0.0095 (5)0.0093 (4)0.0006 (4)0.0032 (4)
P40.0115 (5)0.0132 (5)0.0106 (5)0.0084 (4)−0.0009 (4)0.0000 (4)
O10.0157 (15)0.0117 (14)0.0132 (15)0.0076 (13)0.0006 (12)−0.0027 (12)
O20.0192 (16)0.0124 (15)0.0079 (14)0.0077 (13)0.0020 (12)0.0008 (11)
O30.0216 (17)0.0164 (16)0.0055 (14)0.0104 (14)0.0015 (12)−0.0001 (12)
O40.0141 (16)0.0152 (16)0.0215 (18)0.0076 (13)0.0028 (13)−0.0036 (13)
O50.0089 (14)0.0147 (16)0.0269 (19)0.0044 (13)−0.0040 (13)−0.0065 (14)
O60.0120 (15)0.0265 (18)0.0117 (15)0.0125 (14)−0.0042 (12)−0.0051 (13)
O70.0154 (16)0.0188 (17)0.0264 (19)0.0110 (14)0.0048 (14)0.0145 (14)
O80.0126 (16)0.027 (2)0.028 (2)0.0050 (15)0.0040 (14)−0.0063 (16)
O90.023 (2)0.030 (2)0.060 (3)0.0199 (18)−0.019 (2)−0.030 (2)
O100.063 (3)0.025 (2)0.021 (2)0.033 (2)−0.0207 (19)−0.0072 (16)
O110.0202 (19)0.0148 (17)0.058 (3)0.0114 (15)0.0067 (18)−0.0006 (18)
O120.063 (3)0.022 (2)0.0141 (19)0.014 (2)0.0127 (19)0.0068 (15)

Geometric parameters (Å, °)

Lu1—O7i2.207 (3)Lu3—O3x2.229 (3)
Lu1—O7ii2.207 (3)P1—O51.475 (3)
Lu1—O7iii2.207 (3)P1—O71.477 (3)
Lu1—O7iv2.207 (3)P1—O10iii1.569 (4)
Lu1—O72.207 (3)P1—O91.578 (4)
Lu1—O7v2.207 (3)P2—O31.472 (3)
Lu2—O8vi2.180 (3)P2—O11.488 (3)
Lu2—O8iv2.180 (3)P2—O6xi1.585 (3)
Lu2—O8iii2.180 (3)P2—O2ii1.593 (3)
Lu2—O82.180 (3)P3—O111.467 (4)
Lu2—O8vii2.180 (3)P3—O121.472 (4)
Lu2—O8viii2.180 (3)P3—O9i1.573 (4)
Lu3—O11ix2.134 (3)P3—O21.587 (3)
Lu3—O122.176 (4)P4—O81.478 (4)
Lu3—O42.180 (3)P4—O41.478 (3)
Lu3—O52.189 (3)P4—O101.560 (4)
Lu3—O12.207 (3)P4—O61.581 (3)
O7i—Lu1—O7ii88.57 (14)O4—Lu3—O587.21 (12)
O7i—Lu1—O7iii180.0O11ix—Lu3—O191.99 (13)
O7ii—Lu1—O7iii91.43 (14)O12—Lu3—O195.32 (14)
O7i—Lu1—O7iv91.43 (14)O4—Lu3—O1171.70 (12)
O7ii—Lu1—O7iv180.0O5—Lu3—O184.56 (12)
O7iii—Lu1—O7iv88.57 (14)O11ix—Lu3—O3x88.69 (15)
O7i—Lu1—O791.43 (14)O12—Lu3—O3x174.96 (15)
O7ii—Lu1—O791.43 (14)O4—Lu3—O3x95.25 (12)
O7iii—Lu1—O788.57 (14)O5—Lu3—O3x96.14 (13)
O7iv—Lu1—O788.57 (14)O1—Lu3—O3x84.56 (12)
O7i—Lu1—O7v88.57 (14)O5—P1—O7119.4 (2)
O7ii—Lu1—O7v88.57 (14)O5—P1—O10iii106.7 (2)
O7iii—Lu1—O7v91.43 (14)O7—P1—O10iii110.3 (2)
O7iv—Lu1—O7v91.43 (14)O5—P1—O9109.15 (19)
O7—Lu1—O7v180.0O7—P1—O9110.6 (2)
O8vi—Lu2—O8iv180.0O10iii—P1—O998.7 (3)
O8vi—Lu2—O8iii90.92 (15)O3—P2—O1119.23 (19)
O8iv—Lu2—O8iii89.08 (15)O3—P2—O6xi105.71 (18)
O8vi—Lu2—O890.92 (15)O1—P2—O6xi109.44 (19)
O8iv—Lu2—O889.08 (15)O3—P2—O2ii112.19 (18)
O8iii—Lu2—O889.08 (15)O1—P2—O2ii106.01 (18)
O8vi—Lu2—O8vii89.08 (15)O6xi—P2—O2ii103.12 (18)
O8iv—Lu2—O8vii90.92 (15)O11—P3—O12118.6 (3)
O8iii—Lu2—O8vii180.0O11—P3—O9i105.0 (2)
O8—Lu2—O8vii90.92 (15)O12—P3—O9i108.6 (3)
O8vi—Lu2—O8viii89.08 (15)O11—P3—O2110.6 (2)
O8iv—Lu2—O8viii90.92 (15)O12—P3—O2107.7 (2)
O8iii—Lu2—O8viii90.92 (15)O9i—P3—O2105.49 (19)
O8—Lu2—O8viii180.0O8—P4—O4116.6 (2)
O8vii—Lu2—O8viii89.08 (15)O8—P4—O10107.9 (2)
O11ix—Lu3—O1286.28 (18)O4—P4—O10113.3 (2)
O11ix—Lu3—O496.31 (13)O8—P4—O6108.8 (2)
O12—Lu3—O485.59 (14)O4—P4—O6110.62 (18)
O11ix—Lu3—O5173.76 (15)O10—P4—O697.91 (19)
O12—Lu3—O588.86 (16)

Symmetry codes: (i) xy+1/3, x−1/3, −z+2/3; (ii) y+1/3, −x+y+2/3, −z+2/3; (iii) −x+y+1, −x+1, z; (iv) −y+1, xy, z; (v) −x+4/3, −y+2/3, −z+2/3; (vi) y+1/3, −x+y+2/3, −z−1/3; (vii) xy+1/3, x−1/3, −z−1/3; (viii) −x+4/3, −y+2/3, −z−1/3; (ix) −x+y+1/3, −x+2/3, z−1/3; (x) −x+1, −y+1, −z; (xi) −y+2/3, xy+1/3, z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2065).

References

  • Anisimova, N. Y., Trunov, V. K., Karamanovskaya, N. B. & Chudinova, N. N. (1992). Neorg. Mater.28, 441–444.
  • Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Briche, S., Zambon, D., Boyer, D., Chadeyron, G. & Mahiou, R. (2006). Opt. Mater.28, 615–620.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Graia, M., Driss, A. & Jouini, T. (2003). Solid State Sci.5, 393–402.
  • Höppe, H. A. & Sedlmaier, S. J. (2007). Inorg. Chem.46, 3467–3474. [PubMed]
  • Jouini, A., Férid, M., Gacon, J. C., Grosvalet, L., Thozet, A. & Trabelsi-Ayadi, M. (2003). Mater. Res. Bull.38, 1613–1622.
  • Jouini, A., Férid, M., Gacon, J. C. & Trabelsi-Ayadi, M. (2003). Opt. Mater.24, 175–180.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ternane, R., Férid, M., Panczer, G., Trabelsi-Ayadi, M. & Boulon, G. (2005). Opt. Mater.27, 1832–1838.
  • Yuan, J. L., Zhang, H., Zhao, J. T., Chen, H. H., Yang, X. X. & Zhang, G. B. (2008). Opt. Mater.30, 1369–1374.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography