PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): i47.
Published online 2008 July 5. doi:  10.1107/S1600536808020278
PMCID: PMC2961902

Zr3NiSb7: a new anti­mony-enriched ZrSb2 derivative

Abstract

Single crystals of trizirconium nickel hepta­anti­monide were synthesized from the constituent elements by arc-melting. The compound crystallizes in a unique structure type and belongs to the family of two-layer structures. All crystallographically unique atoms (3 × Zr, 1 × Ni and 7 × Sb) are located at sites with m symmetry. The structure contains ‘Zr2Ni2Sb5’ and ‘Zr4Sb9’ fragments and might be described as a new ZrSb2 derivative with a high Sb content.

Related literature

The structure of ZrSb2 was described by Garcia & Corbett (1988 [triangle]). For related anti­monides, see: Romaka et al. (2007 [triangle]); Tkachuk et al. (2007 [triangle]). For related literature, see: Emsley (1991 [triangle]).

Experimental

Crystal data

  • Zr3NiSb7
  • M r = 1184.62
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i47-efi3.jpg
  • a = 17.5165 (19) Å
  • b = 3.9266 (4) Å
  • c = 14.3968 (15) Å
  • V = 990.22 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 23.56 mm−1
  • T = 295 (2) K
  • 0.37 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART 1000 diffractometer
  • Absorption correction: numerical (SHELXTL; Sheldrick, 2008 [triangle]) T min = 0.057, T max = 0.426
  • 11118 measured reflections
  • 1722 independent reflections
  • 1500 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.053
  • S = 1.18
  • 1722 reflections
  • 68 parameters
  • Δρmax = 2.12 e Å−3
  • Δρmin = −2.89 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020278/wm2182sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020278/wm2182Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was in part supported by the Ministry of Ukraine for Education and Science (grant No. 0106U001299).

supplementary crystallographic information

Comment

Antimony based intermetallics attract interest due to interesting thermoelectric properties of some phases, e.g. antimonides with MgAgAs and Y3Au3Sb4 type structures. The investigation of new intermetallic phases is useful for the development of new materials, and the accurate determination of their crystal structures is a basic requirement for a better understanding of the corresponding physical properties.

Investigation of the Zr–Ni–Sb ternary system revealed the presence of several compounds in the Sb-enriched area (Romaka et al., 2007), including the new title antimonide with composition Zr27Ni9Sb64 (in %at). Interatomic distances (Table 1) between Sb atoms are in good agreement with the sum of the atomic radius (Emsley, 1991), whereas the majority of Zr—Sb and all Ni—Sb distances are somewhat shortened. Such shortening may be explained by partial covalent bonding which appears to be significant between Ni—Sb atoms because their contact distances are rather close to the sum of their covalent radii (2.56 Å). As the majority of ternary intermetallics are constructed from the fragments of their most stable binary compounds, the structure analysis of the antimonides Zr3NiSb7 and the already known Zr2NiSb3 (Tkachuk et al., 2007) in the Sb-enriched area shows that both can be derived from the binary compound ZrSb2 (Garcia & Corbett, 1988), which crystallizes in the PbCl2 structure type.

Zr3NiSb7 belongs to the family of two-layer structures. It may be represented as a net of trigonal prisms formed by Sb atoms that are bridged by nickel atoms (Fig. 1a). Such an arrangement is very similar to that in the binary ZrSb2 structure (Fig. 1b). The coordination polyhedra are distorted tri-capped trigonal prisms for the Zr atoms, and distorted octahedra for Ni atoms. In an alternative description, the Zr3NiSb7 structure contains fragments of the hypothetical "Zr2Ni2Sb5" and "Zr4Sb9" structures (Fig. 2) which are so far unknown for the ternary Zr–Ni–Sb or binary Zr–Sb systems. The main feature of the Zr3NiSb7 structure is the absence of covalent bonding between antimony atoms in contrast to the ZrSb2 structure. The general conclusion is that the presence of Ni atoms intensifies the interaction between Zr/Ni and Sb and, at the same time, reduces the bonding between Sb atoms. One may speculate that the composition of the Zr3NiSb7 compound may be the boundary limit of some solid solutions based on ZrSb2. However, the detailed study of the phase equilibria in the Zr–Ni–Sb system did not show a formation of any substitutional or interstitial solid solution. Moreover, the diffraction patterns of Zr3NiSb7 and ZrSb2 are rather different.

Experimental

A sample with nominal composition Zr30Ni10Sb60 was prepared by arc-melting the constituent elements Zr (99.99 wt.%), Ni (99.99 wt.%), and Sb (99.99 wt.%) on a water-cooled copper hearth under a protective Ti-gettered argon atmosphere. 5 wt.% excess of Sb was required to compensate the evaporative loss during arc-melting. The ingot was annealed at 870 K for 720 h in an evacuated silica ampoule, and finally quenched in cold water. A crystal of the title compound suitable for single-crystal X-ray diffraction was extracted directly from the annealed sample. The chemical composition of the crystal was determined on the basis of an energy dispersive X-ray spectroscopical analysis using a Hitachi S-2700 scanning electron microscope. The result of the analysis is in good aggreement with the composition calculated from the structural refinement: Measured: 24.5 (8) %at Zr, 11.3 (6) %at Ni, 64.2 (16) %at Sb; calculated Zr 27 %at, Ni 9%at, Sb 64 %at.

Refinement

The highest remaining electron density peak and the deepest hole are located 0.80 Å from Sb1 and 1.78 Å from Ni1, respectively. The structure solution and refinement were also performed in the non-centrosymmetric space group Pna21, but were less satisfactory and resulted in larger R indices and atomic displacement parameters.

Figures

Fig. 1.
(a). Projection of the Zr3NiSb7 structure onto the (010) plane with displacement ellipsoids drawn at the 95% probability level. [Symmetry codes: (i) 0.5 - x, 1 - y, -1/2 + z; (iv) 0.5 - x, -y, 0.5 - z; (vi) 1/2 + x, y, 1.5 - z]; (b) Projection of the ...
Fig. 2.
The stacked "Zr2Ni2Sb5" and "Zr4Sb9" fragments in the Zr3NiSb7 structure.

Crystal data

Zr3NiSb7F000 = 2020
Mr = 1184.62Dx = 7.946 Mg m3
Orthorhombic, PnmaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4956 reflections
a = 17.5165 (19) Åθ = 2.3–33.1º
b = 3.9266 (4) ŵ = 23.56 mm1
c = 14.3968 (15) ÅT = 295 (2) K
V = 990.22 (18) Å3Needle, silver
Z = 40.37 × 0.06 × 0.04 mm

Data collection

Bruker SMART 1000 diffractometer1722 independent reflections
Radiation source: fine-focus sealed tube1500 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
T = 295(2) Kθmax = 30.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: numerical(SHELXTL; Sheldrick, 2008)h = −25→25
Tmin = 0.057, Tmax = 0.426k = −5→5
11118 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0223P)2 + 1.1518P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.001
wR(F2) = 0.054Δρmax = 2.12 e Å3
S = 1.18Δρmin = −2.89 e Å3
1722 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
68 parametersExtinction coefficient: 0.00069 (5)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zr10.34664 (4)0.25000.19076 (5)0.00788 (14)
Zr20.37045 (4)0.25000.47072 (5)0.00721 (13)
Zr30.39237 (4)0.25000.90990 (5)0.00782 (14)
Ni10.43680 (5)0.25000.68908 (6)0.00903 (18)
Sb10.02147 (3)0.25000.29766 (3)0.00871 (11)
Sb20.03748 (2)0.25000.07626 (3)0.00790 (10)
Sb30.07123 (3)0.25000.56057 (3)0.00957 (11)
Sb40.09131 (3)0.25000.82504 (3)0.00823 (10)
Sb50.22833 (3)0.25000.35390 (3)0.00918 (11)
Sb60.24792 (2)0.25000.02153 (3)0.00875 (11)
Sb70.28995 (3)0.25000.68532 (4)0.01218 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zr10.0068 (3)0.0083 (3)0.0085 (3)0.000−0.0007 (2)0.000
Zr20.0054 (3)0.0077 (3)0.0085 (3)0.0000.0002 (2)0.000
Zr30.0064 (3)0.0078 (3)0.0092 (3)0.0000.0004 (2)0.000
Ni10.0085 (4)0.0092 (5)0.0094 (4)0.0000.0000 (3)0.000
Sb10.0081 (2)0.0089 (2)0.0092 (2)0.000−0.00158 (15)0.000
Sb20.0069 (2)0.0084 (2)0.0084 (2)0.0000.00046 (15)0.000
Sb30.0104 (2)0.0100 (2)0.0083 (2)0.0000.00042 (16)0.000
Sb40.0082 (2)0.0086 (2)0.0079 (2)0.0000.00022 (15)0.000
Sb50.0069 (2)0.0104 (2)0.0102 (2)0.0000.00005 (15)0.000
Sb60.0069 (2)0.0100 (2)0.0094 (2)0.000−0.00051 (15)0.000
Sb70.0076 (2)0.0100 (3)0.0189 (3)0.0000.00142 (16)0.000

Geometric parameters (Å, °)

Zr1—Sb4i2.9620 (6)Sb2—Ni1ii2.5876 (7)
Zr1—Sb4ii2.9620 (6)Sb2—Zr2ii2.9604 (6)
Zr1—Sb62.9876 (8)Sb2—Zr2i2.9604 (6)
Zr1—Sb1iii3.0669 (8)Sb2—Zr2viii3.0030 (8)
Zr1—Sb3ii3.0720 (7)Sb2—Sb2xi3.2250 (7)
Zr1—Sb3i3.0720 (7)Sb2—Sb2xii3.2250 (7)
Zr1—Sb7ii3.0960 (6)Sb2—Sb4x3.3111 (6)
Zr1—Sb7i3.0960 (6)Sb2—Sb4ix3.3111 (6)
Zr1—Sb53.1324 (8)Sb3—Zr3ii2.9943 (7)
Zr2—Sb6iv2.9478 (6)Sb3—Zr3i2.9943 (7)
Zr2—Sb6v2.9478 (6)Sb3—Zr1v3.0720 (7)
Zr2—Sb4ii2.9499 (6)Sb3—Zr1iv3.0720 (7)
Zr2—Sb4i2.9499 (6)Sb3—Zr3xiii3.1617 (9)
Zr2—Sb2v2.9604 (6)Sb3—Sb1ix3.2645 (6)
Zr2—Sb2iv2.9604 (6)Sb3—Sb1x3.2645 (6)
Zr2—Sb2iii3.0029 (8)Sb4—Ni1xiii2.7141 (10)
Zr2—Sb53.0044 (8)Sb4—Zr2v2.9499 (6)
Zr2—Sb73.3962 (9)Sb4—Zr2iv2.9499 (6)
Zr3—Sb1iv2.9569 (6)Sb4—Zr1iv2.9619 (6)
Zr3—Sb1v2.9569 (6)Sb4—Zr1v2.9619 (6)
Zr3—Sb3v2.9944 (7)Sb4—Sb1x3.2981 (6)
Zr3—Sb3iv2.9944 (7)Sb4—Sb1ix3.2981 (6)
Zr3—Sb5iv2.9958 (6)Sb4—Sb2x3.3111 (6)
Zr3—Sb5v2.9958 (6)Sb4—Sb2ix3.3110 (6)
Zr3—Sb6vi2.9975 (8)Sb5—Zr3ii2.9958 (6)
Zr3—Sb3vii3.1616 (9)Sb5—Zr3i2.9958 (6)
Zr3—Ni13.2730 (12)Sb5—Sb7ii3.1380 (6)
Ni1—Sb72.5728 (10)Sb5—Sb7i3.1380 (6)
Ni1—Sb2iv2.5875 (7)Sb5—Sb6v3.1387 (6)
Ni1—Sb2v2.5875 (7)Sb5—Sb6iv3.1387 (6)
Ni1—Sb1v2.6140 (7)Sb6—Zr2ii2.9478 (6)
Ni1—Sb1iv2.6140 (7)Sb6—Zr2i2.9478 (6)
Ni1—Sb4vii2.7141 (10)Sb6—Zr3xiv2.9974 (8)
Sb1—Ni1ii2.6139 (7)Sb6—Sb5ii3.1388 (6)
Sb1—Ni1i2.6139 (7)Sb6—Sb5i3.1388 (6)
Sb1—Zr3i2.9570 (6)Sb6—Sb7i3.1393 (6)
Sb1—Zr3ii2.9570 (6)Sb6—Sb7ii3.1393 (6)
Sb1—Zr1viii3.0669 (8)Sb7—Zr1iv3.0960 (6)
Sb1—Sb23.1998 (8)Sb7—Zr1v3.0960 (6)
Sb1—Sb3ix3.2645 (6)Sb7—Sb5v3.1380 (6)
Sb1—Sb3x3.2645 (6)Sb7—Sb5iv3.1380 (6)
Sb1—Sb4x3.2981 (6)Sb7—Sb6iv3.1393 (6)
Sb1—Sb4ix3.2981 (6)Sb7—Sb6v3.1393 (6)
Sb2—Ni1i2.5876 (7)
Sb4i—Zr1—Sb4ii83.03 (2)Ni1i—Sb2—Zr2viii108.12 (2)
Sb4i—Zr1—Sb6138.128 (11)Ni1ii—Sb2—Zr2viii108.12 (2)
Sb4ii—Zr1—Sb6138.128 (11)Zr2ii—Sb2—Zr2viii114.528 (17)
Sb4i—Zr1—Sb1iii66.303 (16)Zr2i—Sb2—Zr2viii114.528 (17)
Sb4ii—Zr1—Sb1iii66.303 (16)Ni1i—Sb2—Sb152.409 (19)
Sb6—Zr1—Sb1iii128.48 (3)Ni1ii—Sb2—Sb152.409 (19)
Sb4i—Zr1—Sb3ii130.54 (3)Zr2ii—Sb2—Sb1123.991 (17)
Sb4ii—Zr1—Sb3ii78.623 (15)Zr2i—Sb2—Sb1123.991 (17)
Sb6—Zr1—Sb3ii76.910 (19)Zr2viii—Sb2—Sb197.986 (19)
Sb1iii—Zr1—Sb3ii64.250 (16)Ni1i—Sb2—Sb2xi163.78 (3)
Sb4i—Zr1—Sb3i78.623 (15)Ni1ii—Sb2—Sb2xi92.085 (17)
Sb4ii—Zr1—Sb3i130.54 (3)Zr2ii—Sb2—Sb2xi57.900 (17)
Sb6—Zr1—Sb3i76.911 (19)Zr2i—Sb2—Sb2xi106.03 (2)
Sb1iii—Zr1—Sb3i64.250 (16)Zr2viii—Sb2—Sb2xi56.628 (16)
Sb3ii—Zr1—Sb3i79.45 (2)Sb1—Sb2—Sb2xi129.982 (17)
Sb4i—Zr1—Sb7ii136.09 (3)Ni1i—Sb2—Sb2xii92.085 (17)
Sb4ii—Zr1—Sb7ii83.092 (15)Ni1ii—Sb2—Sb2xii163.78 (3)
Sb6—Zr1—Sb7ii62.103 (16)Zr2ii—Sb2—Sb2xii106.03 (2)
Sb1iii—Zr1—Sb7ii140.627 (10)Zr2i—Sb2—Sb2xii57.900 (16)
Sb3ii—Zr1—Sb7ii86.630 (15)Zr2viii—Sb2—Sb2xii56.628 (16)
Sb3i—Zr1—Sb7ii138.75 (3)Sb1—Sb2—Sb2xii129.982 (17)
Sb4i—Zr1—Sb7i83.092 (15)Sb2xi—Sb2—Sb2xii75.00 (2)
Sb4ii—Zr1—Sb7i136.09 (3)Ni1i—Sb2—Sb4x107.40 (3)
Sb6—Zr1—Sb7i62.103 (16)Ni1ii—Sb2—Sb4x53.08 (2)
Sb1iii—Zr1—Sb7i140.627 (10)Zr2ii—Sb2—Sb4x101.431 (12)
Sb3ii—Zr1—Sb7i138.75 (3)Zr2i—Sb2—Sb4x169.95 (2)
Sb3i—Zr1—Sb7i86.630 (15)Zr2viii—Sb2—Sb4x55.446 (14)
Sb7ii—Zr1—Sb7i78.71 (2)Sb1—Sb2—Sb4x60.840 (12)
Sb4i—Zr1—Sb575.722 (19)Sb2xi—Sb2—Sb4x69.745 (15)
Sb4ii—Zr1—Sb575.722 (19)Sb2xii—Sb2—Sb4x112.07 (2)
Sb6—Zr1—Sb5103.21 (2)Ni1i—Sb2—Sb4ix53.08 (2)
Sb1iii—Zr1—Sb5128.31 (3)Ni1ii—Sb2—Sb4ix107.40 (3)
Sb3ii—Zr1—Sb5140.115 (11)Zr2ii—Sb2—Sb4ix169.95 (2)
Sb3i—Zr1—Sb5140.115 (11)Zr2i—Sb2—Sb4ix101.431 (12)
Sb7ii—Zr1—Sb560.504 (16)Zr2viii—Sb2—Sb4ix55.446 (14)
Sb7i—Zr1—Sb560.504 (16)Sb1—Sb2—Sb4ix60.840 (12)
Sb6iv—Zr2—Sb6v83.52 (2)Sb2xi—Sb2—Sb4ix112.07 (2)
Sb6iv—Zr2—Sb4ii83.851 (14)Sb2xii—Sb2—Sb4ix69.745 (15)
Sb6v—Zr2—Sb4ii141.21 (3)Sb4x—Sb2—Sb4ix72.732 (15)
Sb6iv—Zr2—Sb4i141.21 (3)Zr3ii—Sb3—Zr3i81.94 (2)
Sb6v—Zr2—Sb4i83.851 (14)Zr3ii—Sb3—Zr1v139.58 (2)
Sb4ii—Zr2—Sb4i83.45 (2)Zr3i—Sb3—Zr1v85.597 (17)
Sb6iv—Zr2—Sb2v134.23 (3)Zr3ii—Sb3—Zr1iv85.597 (16)
Sb6v—Zr2—Sb2v79.287 (15)Zr3i—Sb3—Zr1iv139.58 (2)
Sb4ii—Zr2—Sb2v133.05 (3)Zr1v—Sb3—Zr1iv79.45 (2)
Sb4i—Zr2—Sb2v78.456 (15)Zr3ii—Sb3—Zr3xiii107.962 (18)
Sb6iv—Zr2—Sb2iv79.287 (15)Zr3i—Sb3—Zr3xiii107.962 (18)
Sb6v—Zr2—Sb2iv134.23 (3)Zr1v—Sb3—Zr3xiii112.458 (19)
Sb4ii—Zr2—Sb2iv78.456 (15)Zr1iv—Sb3—Zr3xiii112.458 (19)
Sb4i—Zr2—Sb2iv133.05 (3)Zr3ii—Sb3—Sb1ix162.39 (2)
Sb2v—Zr2—Sb2iv83.09 (2)Zr3i—Sb3—Sb1ix99.468 (13)
Sb6iv—Zr2—Sb2iii137.839 (11)Zr1v—Sb3—Sb1ix57.799 (16)
Sb6v—Zr2—Sb2iii137.839 (11)Zr1iv—Sb3—Sb1ix103.64 (2)
Sb4ii—Zr2—Sb2iii67.583 (16)Zr3xiii—Sb3—Sb1ix54.764 (13)
Sb4i—Zr2—Sb2iii67.583 (16)Zr3ii—Sb3—Sb1x99.468 (13)
Sb2v—Zr2—Sb2iii65.474 (17)Zr3i—Sb3—Sb1x162.39 (2)
Sb2iv—Zr2—Sb2iii65.474 (17)Zr1v—Sb3—Sb1x103.64 (2)
Sb6iv—Zr2—Sb563.641 (17)Zr1iv—Sb3—Sb1x57.799 (15)
Sb6v—Zr2—Sb563.641 (17)Zr3xiii—Sb3—Sb1x54.764 (13)
Sb4ii—Zr2—Sb577.886 (19)Sb1ix—Sb3—Sb1x73.942 (15)
Sb4i—Zr2—Sb577.886 (19)Ni1xiii—Sb4—Zr2v106.24 (2)
Sb2v—Zr2—Sb5137.621 (11)Ni1xiii—Sb4—Zr2iv106.24 (2)
Sb2iv—Zr2—Sb5137.621 (12)Zr2v—Sb4—Zr2iv83.45 (2)
Sb2iii—Zr2—Sb5132.94 (3)Ni1xiii—Sb4—Zr1iv108.49 (2)
Sb6iv—Zr2—Sb758.813 (15)Zr2v—Sb4—Zr1iv145.27 (2)
Sb6v—Zr2—Sb758.813 (15)Zr2iv—Sb4—Zr1iv86.535 (17)
Sb4ii—Zr2—Sb7137.823 (12)Ni1xiii—Sb4—Zr1v108.49 (2)
Sb4i—Zr2—Sb7137.823 (12)Zr2v—Sb4—Zr1v86.535 (17)
Sb2v—Zr2—Sb776.068 (18)Zr2iv—Sb4—Zr1v145.27 (2)
Sb2iv—Zr2—Sb776.068 (18)Zr1iv—Sb4—Zr1v83.03 (2)
Sb2iii—Zr2—Sb7127.55 (2)Ni1xiii—Sb4—Sb1x50.403 (16)
Sb5—Zr2—Sb799.51 (2)Zr2v—Sb4—Sb1x155.92 (2)
Sb1iv—Zr3—Sb1v83.21 (2)Zr2iv—Sb4—Sb1x96.928 (13)
Sb1iv—Zr3—Sb3v136.27 (3)Zr1iv—Sb4—Sb1x58.375 (16)
Sb1v—Zr3—Sb3v81.481 (15)Zr1v—Sb4—Sb1x105.36 (2)
Sb1iv—Zr3—Sb3iv81.481 (16)Ni1xiii—Sb4—Sb1ix50.403 (16)
Sb1v—Zr3—Sb3iv136.27 (3)Zr2v—Sb4—Sb1ix96.928 (13)
Sb3v—Zr3—Sb3iv81.94 (2)Zr2iv—Sb4—Sb1ix155.92 (2)
Sb1iv—Zr3—Sb5iv77.172 (16)Zr1iv—Sb4—Sb1ix105.36 (2)
Sb1v—Zr3—Sb5iv130.41 (3)Zr1v—Sb4—Sb1ix58.375 (16)
Sb3v—Zr3—Sb5iv140.80 (3)Sb1x—Sb4—Sb1ix73.066 (15)
Sb3iv—Zr3—Sb5iv85.155 (14)Ni1xiii—Sb4—Sb2x49.662 (16)
Sb1iv—Zr3—Sb5v130.41 (3)Zr2v—Sb4—Sb2x104.14 (2)
Sb1v—Zr3—Sb5v77.172 (15)Zr2iv—Sb4—Sb2x56.972 (16)
Sb3v—Zr3—Sb5v85.155 (14)Zr1iv—Sb4—Sb2x97.880 (13)
Sb3iv—Zr3—Sb5v140.80 (3)Zr1v—Sb4—Sb2x157.39 (2)
Sb5iv—Zr3—Sb5v81.89 (2)Sb1x—Sb4—Sb2x57.912 (14)
Sb1iv—Zr3—Sb6vi136.371 (13)Sb1ix—Sb4—Sb2x100.063 (17)
Sb1v—Zr3—Sb6vi136.371 (13)Ni1xiii—Sb4—Sb2ix49.662 (16)
Sb3v—Zr3—Sb6vi77.956 (19)Zr2v—Sb4—Sb2ix56.972 (16)
Sb3iv—Zr3—Sb6vi77.956 (19)Zr2iv—Sb4—Sb2ix104.14 (2)
Sb5iv—Zr3—Sb6vi63.164 (17)Zr1iv—Sb4—Sb2ix157.39 (2)
Sb5v—Zr3—Sb6vi63.164 (17)Zr1v—Sb4—Sb2ix97.880 (13)
Sb1iv—Zr3—Sb3vii64.388 (16)Sb1x—Sb4—Sb2ix100.063 (17)
Sb1v—Zr3—Sb3vii64.388 (16)Sb1ix—Sb4—Sb2ix57.912 (14)
Sb3v—Zr3—Sb3vii72.038 (18)Sb2x—Sb4—Sb2ix72.734 (15)
Sb3iv—Zr3—Sb3vii72.038 (18)Zr3ii—Sb5—Zr3i81.89 (2)
Sb5iv—Zr3—Sb3vii137.351 (12)Zr3ii—Sb5—Zr2115.73 (2)
Sb5v—Zr3—Sb3vii137.351 (12)Zr3i—Sb5—Zr2115.73 (2)
Sb6vi—Zr3—Sb3vii139.85 (3)Zr3ii—Sb5—Zr1131.970 (16)
Sb1iv—Zr3—Ni149.295 (15)Zr3i—Sb5—Zr1131.970 (16)
Sb1v—Zr3—Ni149.295 (15)Zr2—Sb5—Zr182.62 (2)
Sb3v—Zr3—Ni1130.769 (18)Zr3ii—Sb5—Sb7ii74.105 (16)
Sb3iv—Zr3—Ni1130.769 (18)Zr3i—Sb5—Sb7ii123.11 (2)
Sb5iv—Zr3—Ni184.63 (2)Zr2—Sb5—Sb7ii121.163 (17)
Sb5v—Zr3—Ni184.63 (2)Zr1—Sb5—Sb7ii59.174 (15)
Sb6vi—Zr3—Ni1136.18 (3)Zr3ii—Sb5—Sb7i123.11 (2)
Sb3vii—Zr3—Ni183.97 (2)Zr3i—Sb5—Sb7i74.105 (16)
Sb7—Ni1—Sb2iv99.26 (3)Zr2—Sb5—Sb7i121.163 (17)
Sb7—Ni1—Sb2v99.26 (3)Zr1—Sb5—Sb7i59.174 (15)
Sb2iv—Ni1—Sb2v98.71 (3)Sb7ii—Sb5—Sb7i77.460 (18)
Sb7—Ni1—Sb1v106.99 (3)Zr3ii—Sb5—Sb6v107.25 (2)
Sb2iv—Ni1—Sb1v153.71 (4)Zr3i—Sb5—Sb6v58.444 (16)
Sb2v—Ni1—Sb1v75.925 (16)Zr2—Sb5—Sb6v57.301 (14)
Sb7—Ni1—Sb1iv106.99 (3)Zr1—Sb5—Sb6v119.266 (16)
Sb2iv—Ni1—Sb1iv75.925 (16)Sb7ii—Sb5—Sb6v178.23 (2)
Sb2v—Ni1—Sb1iv153.71 (4)Sb7i—Sb5—Sb6v102.523 (11)
Sb1v—Ni1—Sb1iv97.37 (3)Zr3ii—Sb5—Sb6iv58.444 (16)
Sb7—Ni1—Sb4vii174.50 (4)Zr3i—Sb5—Sb6iv107.25 (2)
Sb2iv—Ni1—Sb4vii77.26 (2)Zr2—Sb5—Sb6iv57.302 (14)
Sb2v—Ni1—Sb4vii77.26 (2)Zr1—Sb5—Sb6iv119.266 (16)
Sb1v—Ni1—Sb4vii76.46 (2)Sb7ii—Sb5—Sb6iv102.523 (11)
Sb1iv—Ni1—Sb4vii76.46 (2)Sb7i—Sb5—Sb6iv178.23 (2)
Sb7—Ni1—Zr377.45 (3)Sb6v—Sb5—Sb6iv77.438 (18)
Sb2iv—Ni1—Zr3130.623 (17)Zr2ii—Sb6—Zr2i83.52 (2)
Sb2v—Ni1—Zr3130.623 (17)Zr2ii—Sb6—Zr1127.554 (17)
Sb1v—Ni1—Zr359.04 (2)Zr2i—Sb6—Zr1127.554 (17)
Sb1iv—Ni1—Zr359.04 (2)Zr2ii—Sb6—Zr3xiv117.435 (19)
Sb4vii—Ni1—Zr3108.05 (3)Zr2i—Sb6—Zr3xiv117.435 (19)
Ni1ii—Sb1—Ni1i97.37 (3)Zr1—Sb6—Zr3xiv87.06 (2)
Ni1ii—Sb1—Zr3i133.06 (3)Zr2ii—Sb6—Sb5ii59.058 (16)
Ni1i—Sb1—Zr3i71.66 (2)Zr2i—Sb6—Sb5ii108.60 (2)
Ni1ii—Sb1—Zr3ii71.66 (2)Zr1—Sb6—Sb5ii123.387 (17)
Ni1i—Sb1—Zr3ii133.06 (3)Zr3xiv—Sb6—Sb5ii58.391 (14)
Zr3i—Sb1—Zr3ii83.21 (2)Zr2ii—Sb6—Sb5i108.60 (2)
Ni1ii—Sb1—Zr1viii108.17 (2)Zr2i—Sb6—Sb5i59.058 (16)
Ni1i—Sb1—Zr1viii108.17 (2)Zr1—Sb6—Sb5i123.387 (17)
Zr3i—Sb1—Zr1viii118.681 (19)Zr3xiv—Sb6—Sb5i58.391 (14)
Zr3ii—Sb1—Zr1viii118.681 (19)Sb5ii—Sb6—Sb5i77.437 (18)
Ni1ii—Sb1—Sb251.665 (19)Zr2ii—Sb6—Sb7i117.02 (2)
Ni1i—Sb1—Sb251.665 (19)Zr2i—Sb6—Sb7i67.743 (16)
Zr3i—Sb1—Sb2119.976 (18)Zr1—Sb6—Sb7i60.643 (16)
Zr3ii—Sb1—Sb2119.976 (18)Zr3xiv—Sb6—Sb7i125.528 (15)
Zr1viii—Sb1—Sb298.147 (19)Sb5ii—Sb6—Sb7i175.37 (2)
Ni1ii—Sb1—Sb3ix164.74 (2)Sb5i—Sb6—Sb7i102.379 (11)
Ni1i—Sb1—Sb3ix93.514 (18)Zr2ii—Sb6—Sb7ii67.743 (16)
Zr3i—Sb1—Sb3ix60.848 (17)Zr2i—Sb6—Sb7ii117.02 (2)
Zr3ii—Sb1—Sb3ix108.15 (2)Zr1—Sb6—Sb7ii60.643 (16)
Zr1viii—Sb1—Sb3ix57.951 (14)Zr3xiv—Sb6—Sb7ii125.528 (15)
Sb2—Sb1—Sb3ix131.792 (14)Sb5ii—Sb6—Sb7ii102.379 (11)
Ni1ii—Sb1—Sb3x93.514 (18)Sb5i—Sb6—Sb7ii175.37 (2)
Ni1i—Sb1—Sb3x164.74 (2)Sb7i—Sb6—Sb7ii77.422 (18)
Zr3i—Sb1—Sb3x108.15 (2)Ni1—Sb7—Zr1iv140.543 (10)
Zr3ii—Sb1—Sb3x60.848 (17)Ni1—Sb7—Zr1v140.543 (10)
Zr1viii—Sb1—Sb3x57.951 (14)Zr1iv—Sb7—Zr1v78.71 (2)
Sb2—Sb1—Sb3x131.792 (13)Ni1—Sb7—Sb5v94.92 (2)
Sb3ix—Sb1—Sb3x73.942 (16)Zr1iv—Sb7—Sb5v107.36 (2)
Ni1ii—Sb1—Sb4x53.14 (2)Zr1v—Sb7—Sb5v60.321 (16)
Ni1i—Sb1—Sb4x107.12 (3)Ni1—Sb7—Sb5iv94.92 (2)
Zr3i—Sb1—Sb4x173.544 (17)Zr1iv—Sb7—Sb5iv60.321 (16)
Zr3ii—Sb1—Sb4x101.722 (12)Zr1v—Sb7—Sb5iv107.36 (2)
Zr1viii—Sb1—Sb4x55.321 (14)Sb5v—Sb7—Sb5iv77.460 (18)
Sb2—Sb1—Sb4x61.249 (13)Ni1—Sb7—Sb6iv103.12 (2)
Sb3ix—Sb1—Sb4x113.263 (18)Zr1iv—Sb7—Sb6iv57.253 (16)
Sb3x—Sb1—Sb4x71.272 (14)Zr1v—Sb7—Sb6iv104.61 (2)
Ni1ii—Sb1—Sb4ix107.12 (3)Sb5v—Sb7—Sb6iv161.93 (2)
Ni1i—Sb1—Sb4ix53.14 (2)Sb5iv—Sb7—Sb6iv99.677 (12)
Zr3i—Sb1—Sb4ix101.722 (12)Ni1—Sb7—Sb6v103.12 (2)
Zr3ii—Sb1—Sb4ix173.544 (17)Zr1iv—Sb7—Sb6v104.61 (2)
Zr1viii—Sb1—Sb4ix55.321 (14)Zr1v—Sb7—Sb6v57.253 (16)
Sb2—Sb1—Sb4ix61.249 (13)Sb5v—Sb7—Sb6v99.677 (12)
Sb3ix—Sb1—Sb4ix71.272 (14)Sb5iv—Sb7—Sb6v161.93 (2)
Sb3x—Sb1—Sb4ix113.263 (18)Sb6iv—Sb7—Sb6v77.422 (18)
Sb4x—Sb1—Sb4ix73.066 (15)Ni1—Sb7—Zr266.67 (2)
Ni1i—Sb2—Ni1ii98.71 (3)Zr1iv—Sb7—Zr2110.11 (2)
Ni1i—Sb2—Zr2ii136.93 (3)Zr1v—Sb7—Zr2110.11 (2)
Ni1ii—Sb2—Zr2ii73.99 (2)Sb5v—Sb7—Zr2138.240 (11)
Ni1i—Sb2—Zr2i73.99 (2)Sb5iv—Sb7—Zr2138.240 (11)
Ni1ii—Sb2—Zr2i136.93 (3)Sb6iv—Sb7—Zr253.446 (14)
Zr2ii—Sb2—Zr2i83.09 (2)Sb6v—Sb7—Zr253.446 (14)

Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x+1/2, −y, z−1/2; (iii) x+1/2, y, −z+1/2; (iv) −x+1/2, −y, z+1/2; (v) −x+1/2, −y+1, z+1/2; (vi) x, y, z+1; (vii) x+1/2, y, −z+3/2; (viii) x−1/2, y, −z+1/2; (ix) −x, −y+1, −z+1; (x) −x, −y, −z+1; (xi) −x, −y, −z; (xii) −x, −y+1, −z; (xiii) x−1/2, y, −z+3/2; (xiv) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2182).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Emsley, J. (1991). The Elements, 2nd ed. Oxford: Clarendon Press.
  • Garcia, E. & Corbett, J. D. (1988). J. Solid State Chem.73, 440–451.
  • Romaka, L., Tkachuk, A. & Stadnyk, Yu. (2007). 11th Scientific Conference ‘L’viv Chemistry Reading 2007’, Collected Abstracts, p. H37. L’viv: Publishing Center of Ivan Franko National University.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tkachuk, A., Romaka, L. & Stadnyk, Yu. (2007). 10th International Conference on Crystal Chemistry of Intermetallic Compounds, L’viv (Ukraine), Collected Abstracts, p. 71. L’viv: Publishing Center of Ivan Franko National University.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography