PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): i46.
Published online 2008 July 5. doi:  10.1107/S1600536808018898
PMCID: PMC2961901

Lithium manganese(II) diaqua­boro­phosphate monohydrate

Abstract

The title compound, LiMn(H2O)2[BP2O8]·H2O, is built up of an open framework of helical borophosphate ribbons inter­connected by MnO4(H2O)2 octa­hedra, forming one-dimensional channels along [001] occupied by Li+ cations and disordered H2O mol­ecules (site occupancy 0.5). The Li cations reside in two partially occupied sites [occupancies = 0.42 (3) and 0.289 (13)] near the helices.

Related literature

For related structures, see: Boy & Kniep (2001a [triangle],b [triangle]) for LiCu(H2O)2[BP2O8]·(H2O) and LiZn(H2O)2[BP2O8]·H2O; Ge et al. (2003 [triangle]) for LiCd(H2O)2[BP2O8]·H2O; Lin et al. (2008 [triangle]) for LiMg(H2O)2[BP2O8]·H2O. For related literature, see: Ewald et al. (2006 [triangle]); Kniep et al. (1997 [triangle]).

Experimental

Crystal data

  • LiMn(H2O)2[BP2O8]·H2O
  • M r = 316.68
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-64-00i46-efi4.jpg
  • a = 9.5765 (4) Å
  • c = 15.857 (1) Å
  • V = 1259.4 (1) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 2.01 mm−1
  • T = 295 (2) K
  • 0.16 × 0.12 × 0.12 mm

Data collection

  • Rigaku AFC-7 CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.740, T max = 0.795
  • 9731 measured reflections
  • 1230 independent reflections
  • 1223 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.097
  • S = 1.19
  • 1230 reflections
  • 85 parameters
  • 1 restraint
  • Only H-atom coordinates refined
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.44 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 443 Friedel pairs
  • Flack parameter: −0.01 (4)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]) and ATOMS (Dowty, 2004 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018898/mg2052sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018898/mg2052Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by a fund from the National Natural Science Foundation of China (No. 40472027).

supplementary crystallographic information

Comment

A large family of compounds contains helical borophosphate anions 1[BP2O8]3- with various combinations of metal cations (MIMII, M0.5IMII, MIII) (Kniep et al., 1997; Ewald et al., 2006). To date, the only Li-containing members are LiMII(H2O)2[BP2O8].H2O (MII = Cu, Zn, Cd, Mg) (Boy & Kniep, 2001a, 2001b; Ge et al., 2003; Lin et al., 2008). The structure of LiMn(H2O)2[BP2O8].H2O is reported here.

The borophosphate helices, built up of four-membered rings of alternating BO4 and PO4 tetrahedra, extend along the 65 screw axis (Fig. 1 and 2). These helices are interconnected by Jahn-Teller-distorted Mn2+-centred octahedra, with four oxygen atoms (O3, O4) from PO4 groups and two (O5) from water molecules at the vertices (Fig. 3). Unlike the compounds containing Cu and Zn (Boy & Kniep, 2001a, 2001b) but similar to those containing Cd and Mg (Ge et al., 2003; Lin et al., 2008), there are two distinct Li sites: Li1 is close to the outer wall of the borophosphate helices and Li2 is situated at the free loops (inner wall) of the helices. The sum of occupancies of these Li sites refines to almost unity, as required to maintain charge neutrality in the compound.

Experimental

LiMn(H2O)2[BP2O8].H2O was obtained in the presence of boric acid as a flux. A mixture of 0.1149 g MnCO3, 1.484 g H3BO3, and 0.6235 g LiH2PO4 was ground to a homogeneous powder, which was transferred to a teflon autoclave with 10 ml inline (degree of filling 10%) where it was heated at 443 K for four days.

Refinement

The hydrogen atoms connected to O5 were located from difference Fourier maps with displacement parameters fixed as 1.2*U(O5), whereas those connected to O6 belonging to the disordered water molecules were not located. The sum of the occupancies of Li sites was restrained to maintain charge neutrality within the entire compound. The occupancy of the O6 site associated with the disordered water molecules was fixed at 0.5.

Figures

Fig. 1.
Linkage of borophosphate helices in LiMn(H2O)2[BP2O8].H2O through MnO4(H2O)2 octahedra (BO4, green tetrahedra; PO4, orange tetrahedra; MnO6, violet octahedra; Li, black spheres; H2O, red spheres).
Fig. 2.
Section of LiMn(H2O)2[BP2O8].H2O viewed along the c axis (colour scheme as in Fig. 1).
Fig. 3.
Coordination environment of Mn, B, and P atoms, with displacement ellipsoids drawn at the 50% probability level (symmetry codes: (i) -x+y, y, 1/2-z; (ii) 1-x, 1-x+y, 1/3-z; (iii) y,1-x+y, 1/6+z; (iv) 1-y,1-x, 1/6-z; (v) x-y, x,-1/6+z; (vi) 1+x-y, 1-y,-z, ...

Crystal data

LiMn(H2O)2[BP2O8]·H2ODx = 2.505 Mg m3
Mr = 316.68Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6522Cell parameters from 6263 reflections
Hall symbol: P 65 2 (0 0 1)θ = 2.5–33.2°
a = 9.5765 (4) ŵ = 2.01 mm1
c = 15.857 (1) ÅT = 295 K
V = 1259.4 (1) Å3Hexagonal bipyramid, pale pink
Z = 60.16 × 0.12 × 0.12 mm
F(000) = 942

Data collection

Rigaku AFC-7 CCD diffractometer1230 independent reflections
Radiation source: fine-focus sealed tube1223 reflections with I > 2σ(I)
graphiteRint = 0.032
Detector resolution: 14.6306 pixels mm-1θmax = 30.0°, θmin = 2.5°
thin–slice Δ[var phi]=0.6 & Δω=0.6 scansh = −13→13
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −13→12
Tmin = 0.740, Tmax = 0.795l = −19→22
9731 measured reflections

Refinement

Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.040w = 1/[σ2(Fo2) + (0.008P)2 + 5.1269P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.62 e Å3
1230 reflectionsΔρmin = −0.44 e Å3
85 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0054 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 443 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.01 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.44888 (4)0.89775 (9)0.25000.0163 (2)
P10.61636 (10)0.83327 (10)0.08453 (6)0.0134 (2)
O10.0204 (3)0.2129 (3)0.06593 (16)0.0181 (5)
O20.7681 (3)0.1804 (3)0.01267 (14)0.0158 (5)
O30.4860 (3)0.8589 (4)0.12112 (17)0.0227 (6)
O40.6237 (4)0.6903 (3)0.11938 (17)0.0228 (6)
O50.1884 (4)0.7081 (4)0.2127 (2)0.0340 (8)
O60.9000 (19)0.8166 (12)0.2717 (7)0.079 (3)*0.50
B10.8493 (3)0.1507 (3)0.08330.0140 (9)
Li10.2428 (18)0.7572 (18)0.08330.034 (4)0.42 (3)
Li20.899 (4)0.763 (3)0.3479 (16)0.034 (4)0.289 (13)
H10.133 (8)0.683 (7)0.256 (4)0.041*
H20.179 (7)0.620 (4)0.218 (4)0.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0170 (3)0.0165 (4)0.0153 (3)0.00826 (18)0.0028 (2)0.000
P10.0153 (4)0.0131 (4)0.0113 (3)0.0068 (3)0.0011 (3)−0.0005 (3)
O10.0139 (11)0.0196 (12)0.0200 (12)0.0077 (10)−0.0012 (9)−0.0060 (9)
O20.0195 (12)0.0185 (11)0.0106 (9)0.0104 (10)−0.0029 (9)−0.0024 (8)
O30.0222 (14)0.0306 (15)0.0177 (12)0.0151 (12)0.0028 (10)−0.0046 (11)
O40.0348 (16)0.0150 (12)0.0177 (11)0.0117 (11)−0.0008 (12)0.0022 (10)
O50.0280 (17)0.0233 (15)0.0393 (17)0.0041 (13)0.0118 (14)−0.0065 (14)
B10.0157 (17)0.0157 (17)0.011 (2)0.0083 (19)0.0013 (16)0.0013 (16)
Li10.036 (7)0.036 (7)0.023 (8)0.012 (8)0.003 (6)0.003 (6)
Li20.036 (7)0.036 (7)0.023 (8)0.012 (8)0.003 (6)0.003 (6)

Geometric parameters (Å, °)

Mn1—O4i2.133 (3)O5—H10.82 (7)
Mn1—O4ii2.133 (3)O5—H20.81 (2)
Mn1—O32.139 (3)O6—O6ix0.71 (2)
Mn1—O3iii2.139 (3)O6—Li21.31 (3)
Mn1—O52.311 (4)O6—Li2ix1.95 (3)
Mn1—O5iii2.311 (3)O6—Li2xii1.98 (3)
P1—O31.504 (3)O6—Li2x2.45 (3)
P1—O41.510 (3)O6—Li1xiii2.53 (3)
P1—O1iv1.553 (3)B1—O1xiv1.463 (4)
P1—O2v1.560 (2)B1—O1xv1.463 (4)
O1—B1vi1.463 (4)B1—O2iv1.470 (4)
O1—P1iv1.553 (3)Li1—O5iv2.111 (4)
O1—Li2vii2.65 (3)Li1—O3iv2.112 (17)
O2—B11.470 (4)Li2—O6ix1.95 (3)
O2—P1viii1.560 (2)Li2—O6xii1.98 (3)
O3—Li12.112 (17)Li2—O4ix2.11 (3)
O4—Li2ix2.11 (3)Li2—O5xiii2.18 (3)
O4—Mn1x2.133 (3)Li2—Li2xii2.30 (6)
O5—Li12.111 (4)Li2—O6i2.45 (3)
O5—Li2xi2.18 (3)
O4i—Mn1—O4ii97.89 (17)O2—B1—O2iv102.6 (4)
O4i—Mn1—O3100.17 (11)O5iv—Li1—O5177.6 (17)
O4ii—Mn1—O391.22 (11)O5iv—Li1—O3iv85.4 (4)
O4i—Mn1—O3iii91.22 (11)O5—Li1—O3iv96.0 (5)
O4ii—Mn1—O3iii100.17 (11)O5iv—Li1—O396.0 (5)
O3—Mn1—O3iii162.68 (17)O5—Li1—O385.4 (4)
O4i—Mn1—O5178.14 (13)O3iv—Li1—O3112.6 (14)
O4ii—Mn1—O583.95 (13)O5iv—Li1—O6ii80.8 (8)
O3—Mn1—O580.01 (12)O5—Li1—O6ii96.8 (9)
O3iii—Mn1—O588.19 (12)O3iv—Li1—O6ii122.4 (7)
O4i—Mn1—O5iii83.95 (13)O3—Li1—O6ii124.3 (8)
O4ii—Mn1—O5iii178.14 (14)O5iv—Li1—O6xi96.8 (9)
O3—Mn1—O5iii88.19 (12)O5—Li1—O6xi80.8 (8)
O3iii—Mn1—O5iii80.01 (12)O3iv—Li1—O6xi124.3 (8)
O5—Mn1—O5iii94.2 (2)O3—Li1—O6xi122.4 (7)
O3—P1—O4115.17 (17)O6ii—Li1—O6xi16.0 (5)
O3—P1—O1iv111.97 (16)O6—Li2—O6ix10.8 (10)
O4—P1—O1iv104.62 (16)O6—Li2—O6xii90.8 (17)
O3—P1—O2v105.62 (15)O6ix—Li2—O6xii101.7 (15)
O4—P1—O2v111.81 (15)O6—Li2—O4ix119.9 (19)
O1iv—P1—O2v107.54 (14)O6ix—Li2—O4ix110.3 (14)
B1vi—O1—P1iv129.4 (2)O6xii—Li2—O4ix138.2 (14)
B1—O2—P1viii131.1 (2)O6—Li2—O5xiii117.8 (18)
P1—O3—Mn1128.38 (17)O6ix—Li2—O5xiii114.8 (14)
Li1—O5—H1157 (4)O6xii—Li2—O5xiii102.8 (13)
Li2xi—O5—H193 (4)O4ix—Li2—O5xiii87.8 (11)
Mn1—O5—H1107 (4)O6—Li2—O6i104.2 (18)
Li1—O5—H2103 (4)O6ix—Li2—O6i115.0 (14)
Li2xi—O5—H2162 (4)O6xii—Li2—O6i13.8 (7)
Mn1—O5—H2107 (4)O4ix—Li2—O6i125.5 (12)
H1—O5—H284 (5)O5xiii—Li2—O6i99.1 (11)
Li2—O6—Li2ix146 (2)O6—Li2—O1xvi100.4 (16)
O1xiv—B1—O1xv103.7 (4)O6ix—Li2—O1xvi100.1 (12)
O1xiv—B1—O2113.70 (14)O6xii—Li2—O1xvi89.1 (11)
O1xv—B1—O2111.75 (14)O4ix—Li2—O1xvi59.9 (8)
O1xiv—B1—O2iv111.75 (14)O5xiii—Li2—O1xvi139.4 (13)
O1xv—B1—O2iv113.70 (14)O6i—Li2—O1xvi83.4 (9)

Symmetry codes: (i) y, −x+y+1, z+1/6; (ii) −x+1, −x+y+1, −z+1/3; (iii) −x+y, y, −z+1/2; (iv) −y+1, −x+1, −z+1/6; (v) xy, −y+1, −z; (vi) x−1, y, z; (vii) −y+1, xy, z−1/3; (viii) xy+1, −y+1, −z; (ix) −x+y+1, y, −z+1/2; (x) xy+1, x, z−1/6; (xi) xy, x, z−1/6; (xii) y, x, −z+2/3; (xiii) y, −x+y, z+1/6; (xiv) −y+1, −x, −z+1/6; (xv) x+1, y, z; (xvi) −x+y+1, −x+1, z+1/3.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1···O4iii0.83 (7)2.09 (7)2.878 (5)159.80
O5—H2···O2i0.81 (4)2.09 (5)2.845 (5)156.

Symmetry codes: (iii) −x+y, y, −z+1/2; (i) y, −x+y+1, z+1/6.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2052).

References

  • Boy, I. & Kniep, R. (2001a). Z. Kristallogr. New Cryst. Struct.216, 7–8.
  • Boy, I. & Kniep, R. (2001b). Z. Kristallogr. New Cryst. Struct.216, 9–10.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Dowty, E. (2004). ATOMS Shape Software, Kingsport, Tennessee, USA.
  • Ewald, B., Prots, Yu., Kudla, C., Grünner, D., Cardoso-Gil, R. & Kniep, R. (2006). Chem. Mater.18, 673–679.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Ge, M.-H., Mi, J.-X., Huang, Y.-X., Zhao, J.-T. & Kniep, R. (2003). Z. Kristallogr. New Cryst. Struct.218, 273–274.
  • Kniep, R., Will, H.-G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. Engl.36, 1013–1014.
  • Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography