PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1186.
Published online 2008 June 7. doi:  10.1107/S1600536808015912
PMCID: PMC2961897

3-Bromo-N′-[(E)-4-hydroxy­benzyl­idene]benzohydrazide

Abstract

The title compound, C14H11BrN2O2, was synthesized by the reaction of 4-hydroxy­benzaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 40.1 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H(...)O, O—H(...)N and N—H(...)O hydrogen bonds to form a three-dimensional network.

Related literature

For related structures, see: Cao (2007a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1186-scheme1.jpg

Experimental

Crystal data

  • C14H11BrN2O2
  • M r = 319.16
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1186-efi1.jpg
  • a = 7.5576 (11) Å
  • b = 11.7337 (18) Å
  • c = 15.021 (2) Å
  • V = 1332.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.08 mm−1
  • T = 298 (2) K
  • 0.20 × 0.17 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.577, T max = 0.638
  • 7740 measured reflections
  • 2757 independent reflections
  • 2145 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.059
  • S = 0.97
  • 2757 reflections
  • 176 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 1154 Friedel pairs
  • Flack parameter: 0.006 (9)

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015912/sj2509sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015912/sj2509Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Natural Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 07JK177) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 04JK302) are gratefully acknowledged.

supplementary crystallographic information

Comment

We have recently reported some transition metal complexes with Schiff base ligands (Cao, 2007a,b). We report herein the crystal structure of the title compound, (I), derived from the reaction of 4-hydroxybenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide in methanol.

In compound (I), Fig. 1, the dihedral angle between the two benzene rings is 40.1 (2)°. In the crystal structure, molecules are linked through intermolecular O—H···O, O—H···N, and N—H···O hydrogen bonds, Table 1, to form a three-dimensional network, Figure 2.

Experimental

The compound was prepared by refluxing equimolar quantities of 4-hydroxybenzaldehyde with 3-bromobenzohydrazide in methanol. Colourless block-like crystals were formed when the solution was evaporated in air for about a week.

Refinement

H2A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å, the O—H distance 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I) with ellipsoids drawn at the 30% probability level.
Fig. 2.
The molecular packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C14H11BrN2O2F000 = 640
Mr = 319.16Dx = 1.591 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1827 reflections
a = 7.5576 (11) Åθ = 2.3–24.5º
b = 11.7337 (18) ŵ = 3.09 mm1
c = 15.021 (2) ÅT = 298 (2) K
V = 1332.0 (3) Å3Block, colourless
Z = 40.20 × 0.17 × 0.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer2757 independent reflections
Radiation source: fine-focus sealed tube2145 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
T = 298(2) Kθmax = 26.6º
ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −9→9
Tmin = 0.577, Tmax = 0.638k = −10→14
7740 measured reflectionsl = −18→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031  w = 1/[σ2(Fo2) + (0.0151P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.17 e Å3
2757 reflectionsΔρmin = −0.29 e Å3
176 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), with 1154 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.006 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.04594 (5)0.39161 (3)0.901456 (17)0.06805 (13)
O10.1347 (3)−0.14174 (14)0.15827 (10)0.0414 (5)
H10.0663−0.11630.12080.062*
O20.0446 (3)0.45672 (13)0.48129 (10)0.0435 (4)
N10.1134 (3)0.23480 (18)0.46451 (12)0.0380 (6)
N20.1329 (3)0.29110 (18)0.54514 (12)0.0372 (5)
C10.1401 (3)0.0602 (2)0.38450 (14)0.0310 (6)
C20.0757 (3)0.1044 (2)0.30437 (14)0.0343 (6)
H20.03390.17890.30240.041*
C30.0735 (3)0.03889 (19)0.22853 (14)0.0331 (6)
H30.03150.06920.17540.040*
C40.1341 (3)−0.0726 (2)0.23148 (14)0.0309 (6)
C50.1975 (3)−0.1177 (2)0.31015 (15)0.0357 (6)
H50.2381−0.19250.31200.043*
C60.2003 (3)−0.0514 (2)0.38585 (15)0.0352 (6)
H60.2432−0.08200.43870.042*
C70.1494 (3)0.1299 (2)0.46504 (15)0.0348 (6)
H70.18290.09580.51830.042*
C80.0976 (3)0.4039 (2)0.54681 (14)0.0339 (6)
C90.1227 (3)0.4615 (2)0.63473 (15)0.0333 (6)
C100.0837 (3)0.4069 (2)0.71421 (14)0.0373 (6)
H100.04570.33150.71430.045*
C110.1020 (4)0.4657 (2)0.79290 (15)0.0405 (7)
C120.1571 (4)0.5781 (2)0.79396 (18)0.0482 (8)
H120.16890.61690.84760.058*
C130.1942 (4)0.6314 (2)0.7149 (2)0.0516 (8)
H130.23200.70680.71510.062*
C140.1760 (4)0.5743 (2)0.63504 (17)0.0425 (7)
H140.19950.61160.58170.051*
H2A0.195 (4)0.257 (2)0.5890 (15)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0960 (3)0.0793 (2)0.02888 (14)0.0102 (2)0.00631 (17)−0.00726 (16)
O10.0589 (13)0.0376 (10)0.0276 (8)0.0034 (9)−0.0034 (9)−0.0093 (8)
O20.0655 (12)0.0350 (10)0.0301 (8)0.0023 (10)−0.0072 (10)0.0018 (8)
N10.0566 (16)0.0338 (13)0.0237 (10)0.0039 (11)−0.0060 (10)−0.0063 (9)
N20.0581 (16)0.0306 (13)0.0230 (11)0.0104 (11)−0.0077 (10)−0.0070 (9)
C10.0354 (14)0.0340 (13)0.0236 (13)−0.0019 (11)−0.0012 (10)−0.0033 (10)
C20.0435 (16)0.0295 (12)0.0298 (11)−0.0011 (13)0.0013 (11)−0.0003 (11)
C30.0424 (16)0.0334 (14)0.0235 (11)0.0021 (12)−0.0035 (11)0.0015 (10)
C40.0343 (14)0.0348 (15)0.0238 (12)−0.0046 (11)0.0011 (11)−0.0070 (10)
C50.0470 (17)0.0258 (14)0.0343 (12)0.0036 (13)−0.0010 (11)−0.0011 (12)
C60.0452 (16)0.0362 (14)0.0243 (13)0.0032 (11)−0.0068 (11)0.0013 (11)
C70.0414 (15)0.0393 (17)0.0238 (11)0.0003 (13)−0.0026 (11)−0.0027 (11)
C80.0370 (16)0.0361 (15)0.0287 (12)−0.0032 (13)0.0000 (10)−0.0013 (12)
C90.0362 (15)0.0342 (15)0.0297 (12)0.0039 (12)−0.0045 (11)−0.0069 (11)
C100.0434 (17)0.0381 (14)0.0304 (12)0.0049 (13)−0.0038 (11)−0.0097 (12)
C110.0450 (18)0.0456 (17)0.0308 (13)0.0094 (13)−0.0012 (11)−0.0093 (12)
C120.0512 (19)0.055 (2)0.0388 (15)0.0096 (15)−0.0131 (14)−0.0196 (14)
C130.054 (2)0.0368 (17)0.0644 (19)0.0002 (14)−0.0103 (15)−0.0221 (15)
C140.0483 (18)0.0370 (17)0.0421 (15)−0.0020 (13)−0.0031 (13)−0.0037 (12)

Geometric parameters (Å, °)

Br1—C111.896 (3)C5—C61.378 (3)
O1—C41.367 (3)C5—H50.9300
O1—H10.8200C6—H60.9300
O2—C81.230 (3)C7—H70.9300
N1—C71.260 (3)C8—C91.495 (3)
N1—N21.387 (2)C9—C141.384 (4)
N2—C81.351 (3)C9—C101.387 (3)
N2—H2A0.904 (10)C10—C111.376 (3)
C1—C61.386 (3)C10—H100.9300
C1—C21.398 (3)C11—C121.382 (4)
C1—C71.462 (3)C12—C131.371 (4)
C2—C31.374 (3)C12—H120.9300
C2—H20.9300C13—C141.381 (4)
C3—C41.386 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.381 (3)
C4—O1—H1109.5N1—C7—H7119.0
C7—N1—N2115.88 (19)C1—C7—H7119.0
C8—N2—N1117.51 (19)O2—C8—N2122.9 (2)
C8—N2—H2A121.7 (19)O2—C8—C9121.4 (2)
N1—N2—H2A119 (2)N2—C8—C9115.7 (2)
C6—C1—C2118.5 (2)C14—C9—C10120.1 (2)
C6—C1—C7120.0 (2)C14—C9—C8118.2 (2)
C2—C1—C7121.4 (2)C10—C9—C8121.7 (2)
C3—C2—C1120.7 (2)C11—C10—C9119.1 (2)
C3—C2—H2119.7C11—C10—H10120.5
C1—C2—H2119.7C9—C10—H10120.5
C2—C3—C4119.8 (2)C10—C11—C12121.3 (2)
C2—C3—H3120.1C10—C11—Br1119.1 (2)
C4—C3—H3120.1C12—C11—Br1119.65 (19)
O1—C4—C5117.4 (2)C13—C12—C11119.1 (2)
O1—C4—C3122.4 (2)C13—C12—H12120.4
C5—C4—C3120.2 (2)C11—C12—H12120.4
C6—C5—C4119.7 (2)C12—C13—C14120.7 (3)
C6—C5—H5120.2C12—C13—H13119.6
C4—C5—H5120.2C14—C13—H13119.6
C5—C6—C1121.1 (2)C13—C14—C9119.7 (3)
C5—C6—H6119.5C13—C14—H14120.1
C1—C6—H6119.5C9—C14—H14120.1
N1—C7—C1122.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.952.750 (2)166
O1—H1···N1i0.822.563.003 (3)116
N2—H2A···O1ii0.904 (10)2.136 (14)3.007 (3)162 (3)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2509).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, G.-B. (2007a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem.37, 639–642.
  • Cao, G.-B. (2007b). Acta Cryst. E63, m1149–m1150.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography