PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m975–m976.
Published online 2008 June 28. doi:  10.1107/S1600536808019041
PMCID: PMC2961893

Chlorido(dimethyl sulfoxide)(pyridine-2-thiol­ato N-oxide-κ2 S,O)platinum(II)

Abstract

The asymmetric unit of the title compound, [Pt(C5H4NOS)Cl(C2H6OS)], contains two independent complex mol­ecules having similar geometries. Each PtII atom is four-coordinated in a distorted square-planar geometry by S and O atoms of one pyridine N-oxide ligand, the S atom of one dimethyl sulfoxide mol­ecule and one terminal Cl ion. The mol­ecules are linked into a three-dimensional framework by C—H(...)O and C—H(...)Cl hydrogen bonds.

Related literature

For biological activities of platinum, see: Weiss & Christian (1993 [triangle]); Loehrer et al. (1988 [triangle]); For biological activities of N-oxide derivatives, see: Bovin et al. (1992 [triangle]); Katsuyuki et al. (1991 [triangle]); Leonard et al. (1955 [triangle]); Lobana & Bhatia (1989 [triangle]); Symons & West (1985 [triangle]). For related literature, see: Jebas et al. (2005 [triangle]); Ravindran et al. (2008 [triangle]); Dyksterhouse et al. (2000 [triangle]); Ohms et al. (1982 [triangle]); Ravindran et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m975-scheme1.jpg

Experimental

Crystal data

  • [Pt(C5H4NOS)Cl(C2H6OS)]
  • M r = 434.82
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m975-efi1.jpg
  • a = 10.2407 (5) Å
  • b = 10.9703 (5) Å
  • c = 10.9772 (6) Å
  • α = 82.950 (1)°
  • β = 76.720 (1)°
  • γ = 76.554 (1)°
  • V = 1164.21 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 12.61 mm−1
  • T = 173 (2) K
  • 0.47 × 0.31 × 0.15 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: Gaussian (Coppens, 1970 [triangle]) T min = 0.5, T max = 1.0
  • 22889 measured reflections
  • 5542 independent reflections
  • 5032 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.070
  • S = 1.03
  • 5542 reflections
  • 257 parameters
  • H-atom parameters constrained
  • Δρmax = 5.99 e Å−3
  • Δρmin = −1.02 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019041/ci2615sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019041/ci2615Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RDN thanks the University Grants Commission, India, for a Teacher Fellowship.

supplementary crystallographic information

Comment

The platinum complex, cis-diamminedichloroplatinum(II) (cisplatin) is one of the most widely used antitumor drugs in the world (Weiss & Christian, 1993; Loehrer et al., 1988). N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of the metal platinum and N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran et al., 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The asymmetric unit of the title compound contains two independent complex molecules having similar geometries (Fig. 1 and Table 1). Each PtII atom is four-coordinated in a distorted square-planar geometry by S and O atoms of one pyridine N-oxide ligand, S atom of one dimethyl sulfoxide molecule and one terminal Cl- ion. The average Pt—O [2.013 (4) Å] and Pt—S [2.218 (14) Å] distances are comparable with the values reported in the literature (Dyksterhouse et al., 2000; Ravindran et al., 2008). The mean C—S bond distance [1.755 (6) Å] is slightly longer than that reported for the uncoordinated thione molecule [1.692 (2)–1.698 (2) Å; Ohms et al.,1982]. The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for N-oxides (Allen et al., 1987). The dihedral angle between the two pyridine rings is 26.0 (3)°. The dihedral angle between the Pt1/S1/C1/N6/O7 and N6/C1-C5 planes is 0.6 (2)° and that between the Pt2/S3/C11/N16/O17 and N16/C11-C15 planes is 4.4 (2) Å, respectively.

The crystal packing is stabilized by intermolecular C—H··· O and C—H···Cl hydrogen bonding (Fig. 2).

Experimental

A mixture of 2-benzylsulfanyl pyridine N-oxide, (0.219 g 1 mmol) and potassium tetrachloroplatinate(II) (0.415 g, 1 mmol) in water (20 ml) and methanol (20 ml) was heated at 333 K with stirring for 30 min. A yellow colour mass formed was dissolved in DMSO (10 ml) and kept at 278 K for a week. The compound formed was filtered off and dried. The compound was dissolved in chloroform and allowed to undergo slow evaporation. Fine crystals were obtained after a week.

Refinement

H atoms were positioned geometrically [C-H = 0.95 (aromatic) or 0.98 Å (methyl)] and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C). A rotating group model was used for the methyl groups. The highest residual density peak is located 1.15 Å from atom Pt2 and the deepest hole is located 0.92 Å from atom Pt1.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Pt(C5H4NOS)Cl(C2H6OS)]Z = 4
Mr = 434.82F000 = 808
Triclinic, P1Dx = 2.481 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.2407 (5) ÅCell parameters from 9909 reflections
b = 10.9703 (5) Åθ = 2.5–27.8º
c = 10.9772 (6) ŵ = 12.61 mm1
α = 82.950 (1)ºT = 173 (2) K
β = 76.720 (1)ºPlate, colourless
γ = 76.554 (1)º0.47 × 0.31 × 0.15 mm
V = 1164.21 (10) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer5032 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 173(2) Kθmax = 27.9º
ω and [var phi] scansθmin = 1.9º
Absorption correction: Gaussian(Coppens, 1970)h = −13→13
Tmin = 0.5, Tmax = 1.0k = −14→14
22889 measured reflectionsl = −14→14
5542 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070  w = 1/[σ2(Fo2) + (0.0265P)2 + 7.1392P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5542 reflectionsΔρmax = 5.99 e Å3
257 parametersΔρmin = −1.02 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.659125 (19)0.633021 (18)0.106453 (19)0.02604 (6)
Cl10.77432 (14)0.58127 (13)−0.09729 (13)0.0340 (3)
S10.55837 (15)0.66420 (15)0.30825 (14)0.0370 (3)
S20.48807 (13)0.75691 (12)0.03633 (12)0.0275 (3)
C10.6869 (6)0.5686 (5)0.3749 (5)0.0326 (11)
C20.6782 (7)0.5500 (6)0.5051 (6)0.0412 (14)
H20.59830.58970.56080.049*
C30.7857 (7)0.4741 (6)0.5520 (6)0.0435 (14)
H30.78050.46220.64010.052*
C40.9021 (7)0.4147 (6)0.4701 (6)0.0399 (13)
H40.97630.36180.50200.048*
C50.9085 (6)0.4330 (5)0.3449 (6)0.0343 (12)
H50.98750.39310.28840.041*
N60.8014 (5)0.5089 (4)0.2998 (4)0.0299 (9)
O70.8176 (4)0.5207 (4)0.1729 (4)0.0319 (8)
O80.3857 (4)0.8369 (4)0.1274 (4)0.0389 (10)
C90.5470 (6)0.8558 (5)−0.0944 (6)0.0355 (12)
H9A0.46860.9050−0.12820.053*
H9B0.61030.8044−0.15910.053*
H9C0.59460.9127−0.06820.053*
C100.4004 (6)0.6700 (6)−0.0310 (6)0.0373 (13)
H10A0.35680.61430.03440.056*
H10B0.46590.6197−0.09550.056*
H10C0.33000.7280−0.06930.056*
Pt20.23052 (2)−0.015106 (18)0.666962 (18)0.02707 (6)
Cl20.36326 (16)−0.21985 (13)0.65722 (14)0.0391 (3)
S30.10091 (15)0.17934 (13)0.69804 (14)0.0340 (3)
S40.23267 (14)0.00092 (13)0.46616 (13)0.0307 (3)
C110.0802 (5)0.1703 (5)0.8589 (5)0.0299 (11)
C12−0.0046 (6)0.2637 (5)0.9339 (6)0.0358 (12)
H12−0.05280.33750.89550.043*
C13−0.0197 (6)0.2510 (6)1.0616 (6)0.0384 (13)
H13−0.07840.31501.11160.046*
C140.0521 (6)0.1429 (6)1.1175 (6)0.0376 (13)
H140.04320.13311.20600.045*
C150.1349 (6)0.0516 (5)1.0449 (5)0.0314 (11)
H150.1839−0.02241.08240.038*
N160.1469 (4)0.0670 (4)0.9177 (4)0.0272 (9)
O170.2309 (4)−0.0305 (4)0.8508 (4)0.0315 (8)
O180.1467 (5)0.1149 (4)0.4162 (4)0.0430 (10)
C190.4043 (6)−0.0135 (6)0.3803 (5)0.0359 (12)
H19A0.4095−0.03300.29430.054*
H19B0.4645−0.08120.42060.054*
H19C0.43360.06570.37840.054*
C200.1896 (6)−0.1328 (6)0.4240 (6)0.0377 (13)
H20A0.0948−0.13590.46560.057*
H20B0.2517−0.20880.45020.057*
H20C0.1985−0.12790.33280.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.02424 (10)0.02261 (10)0.02981 (11)−0.00326 (7)−0.00512 (7)−0.00053 (7)
Cl10.0327 (6)0.0314 (6)0.0334 (7)−0.0040 (5)−0.0012 (5)−0.0018 (5)
S10.0320 (7)0.0393 (8)0.0333 (7)0.0038 (6)−0.0052 (5)−0.0030 (6)
S20.0264 (6)0.0248 (6)0.0306 (6)−0.0041 (5)−0.0065 (5)0.0000 (5)
C10.033 (3)0.028 (3)0.035 (3)−0.006 (2)−0.005 (2)−0.001 (2)
C20.044 (3)0.042 (3)0.035 (3)−0.006 (3)−0.009 (3)0.001 (3)
C30.051 (4)0.046 (4)0.037 (3)−0.016 (3)−0.015 (3)0.007 (3)
C40.042 (3)0.036 (3)0.046 (3)−0.012 (3)−0.020 (3)0.004 (3)
C50.032 (3)0.027 (3)0.047 (3)−0.006 (2)−0.015 (2)0.000 (2)
N60.031 (2)0.025 (2)0.033 (2)−0.0056 (18)−0.0087 (18)0.0007 (18)
O70.0277 (18)0.031 (2)0.033 (2)0.0014 (15)−0.0066 (15)−0.0017 (16)
O80.036 (2)0.038 (2)0.037 (2)0.0083 (17)−0.0090 (17)−0.0050 (17)
C90.034 (3)0.025 (3)0.044 (3)−0.006 (2)−0.007 (2)0.008 (2)
C100.035 (3)0.033 (3)0.047 (3)−0.010 (2)−0.015 (3)0.003 (2)
Pt20.02632 (10)0.02645 (11)0.02760 (11)−0.00455 (8)−0.00562 (7)−0.00071 (7)
Cl20.0442 (8)0.0317 (7)0.0354 (7)0.0031 (6)−0.0071 (6)−0.0041 (5)
S30.0385 (7)0.0286 (7)0.0342 (7)−0.0022 (5)−0.0130 (6)0.0009 (5)
S40.0302 (6)0.0327 (7)0.0292 (6)−0.0079 (5)−0.0064 (5)0.0001 (5)
C110.027 (2)0.026 (3)0.038 (3)−0.006 (2)−0.009 (2)−0.003 (2)
C120.032 (3)0.026 (3)0.050 (3)−0.003 (2)−0.012 (2)−0.009 (2)
C130.034 (3)0.036 (3)0.046 (3)−0.001 (2)−0.009 (2)−0.016 (3)
C140.034 (3)0.042 (3)0.037 (3)−0.008 (2)−0.005 (2)−0.010 (2)
C150.029 (3)0.033 (3)0.033 (3)−0.007 (2)−0.009 (2)0.000 (2)
N160.023 (2)0.027 (2)0.031 (2)−0.0025 (17)−0.0061 (17)−0.0047 (17)
O170.0299 (19)0.0267 (19)0.035 (2)0.0031 (15)−0.0077 (15)−0.0055 (15)
O180.043 (2)0.047 (3)0.036 (2)−0.0002 (19)−0.0122 (18)0.0021 (19)
C190.034 (3)0.043 (3)0.032 (3)−0.015 (2)−0.003 (2)−0.003 (2)
C200.037 (3)0.045 (3)0.038 (3)−0.018 (3)−0.009 (2)−0.007 (3)

Geometric parameters (Å, °)

Pt1—O72.020 (4)Pt2—O172.005 (4)
Pt1—S22.1826 (13)Pt2—S42.1850 (14)
Pt1—S12.2495 (15)Pt2—S32.2543 (14)
Pt1—Cl12.3461 (13)Pt2—Cl22.3402 (14)
S1—C11.727 (6)S3—C111.723 (6)
S2—O81.475 (4)S4—O181.477 (4)
S2—C91.767 (6)S4—C201.767 (6)
S2—C101.771 (6)S4—C191.774 (6)
C1—N61.346 (7)C11—N161.353 (7)
C1—C21.403 (8)C11—C121.394 (8)
C2—C31.379 (9)C12—C131.368 (9)
C2—H20.95C12—H120.95
C3—C41.394 (10)C13—C141.396 (9)
C3—H30.95C13—H130.95
C4—C51.353 (9)C14—C151.359 (8)
C4—H40.95C14—H140.95
C5—N61.366 (7)C15—N161.366 (7)
C5—H50.95C15—H150.95
N6—O71.358 (6)N16—O171.378 (5)
C9—H9A0.98C19—H19A0.98
C9—H9B0.98C19—H19B0.98
C9—H9C0.98C19—H19C0.98
C10—H10A0.98C20—H20A0.98
C10—H10B0.98C20—H20B0.98
C10—H10C0.98C20—H20C0.98
O7—Pt1—S2179.05 (12)O17—Pt2—S4179.35 (11)
O7—Pt1—S186.29 (11)O17—Pt2—S386.41 (11)
S2—Pt1—S193.15 (5)S4—Pt2—S394.02 (5)
O7—Pt1—Cl189.02 (11)O17—Pt2—Cl287.69 (11)
S2—Pt1—Cl191.57 (5)S4—Pt2—Cl291.89 (5)
S1—Pt1—Cl1174.53 (5)S3—Pt2—Cl2174.07 (5)
C1—S1—Pt197.4 (2)C11—S3—Pt297.42 (19)
O8—S2—C9107.7 (3)O18—S4—C20108.9 (3)
O8—S2—C10108.1 (3)O18—S4—C19108.9 (3)
C9—S2—C10101.3 (3)C20—S4—C19101.1 (3)
O8—S2—Pt1116.54 (17)O18—S4—Pt2117.14 (19)
C9—S2—Pt1111.3 (2)C20—S4—Pt2110.2 (2)
C10—S2—Pt1110.8 (2)C19—S4—Pt2109.4 (2)
N6—C1—C2117.9 (5)N16—C11—C12117.2 (5)
N6—C1—S1119.2 (4)N16—C11—S3119.3 (4)
C2—C1—S1122.9 (5)C12—C11—S3123.5 (4)
C3—C2—C1119.9 (6)C13—C12—C11121.3 (6)
C3—C2—H2120.1C13—C12—H12119.4
C1—C2—H2120.1C11—C12—H12119.4
C2—C3—C4119.9 (6)C12—C13—C14119.2 (5)
C2—C3—H3120.0C12—C13—H13120.4
C4—C3—H3120.0C14—C13—H13120.4
C5—C4—C3119.4 (6)C15—C14—C13119.8 (6)
C5—C4—H4120.3C15—C14—H14120.1
C3—C4—H4120.3C13—C14—H14120.1
C4—C5—N6120.0 (6)C14—C15—N16119.4 (5)
C4—C5—H5120.0C14—C15—H15120.3
N6—C5—H5120.0N16—C15—H15120.3
C1—N6—O7121.7 (4)C11—N16—C15123.0 (5)
C1—N6—C5122.9 (5)C11—N16—O17120.9 (4)
O7—N6—C5115.4 (5)C15—N16—O17116.0 (4)
N6—O7—Pt1115.3 (3)N16—O17—Pt2115.4 (3)
S2—C9—H9A109.5S4—C19—H19A109.5
S2—C9—H9B109.5S4—C19—H19B109.5
H9A—C9—H9B109.5H19A—C19—H19B109.5
S2—C9—H9C109.5S4—C19—H19C109.5
H9A—C9—H9C109.5H19A—C19—H19C109.5
H9B—C9—H9C109.5H19B—C19—H19C109.5
S2—C10—H10A109.5S4—C20—H20A109.5
S2—C10—H10B109.5S4—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
S2—C10—H10C109.5S4—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
O7—Pt1—S1—C1−0.8 (2)O17—Pt2—S3—C11−5.7 (2)
S2—Pt1—S1—C1180.0 (2)S4—Pt2—S3—C11174.82 (19)
S1—Pt1—S2—O812.4 (2)S3—Pt2—S4—O18−5.8 (2)
Cl1—Pt1—S2—O8−170.4 (2)Cl2—Pt2—S4—O18173.6 (2)
S1—Pt1—S2—C9136.5 (2)S3—Pt2—S4—C20−131.0 (2)
Cl1—Pt1—S2—C9−46.3 (2)Cl2—Pt2—S4—C2048.5 (2)
S1—Pt1—S2—C10−111.7 (2)S3—Pt2—S4—C19118.7 (2)
Cl1—Pt1—S2—C1065.5 (2)Cl2—Pt2—S4—C19−61.8 (2)
Pt1—S1—C1—N61.1 (5)Pt2—S3—C11—N164.8 (4)
Pt1—S1—C1—C2−179.1 (5)Pt2—S3—C11—C12−174.0 (5)
N6—C1—C2—C30.9 (9)N16—C11—C12—C13−0.1 (8)
S1—C1—C2—C3−178.9 (5)S3—C11—C12—C13178.7 (5)
C1—C2—C3—C4−0.8 (10)C11—C12—C13—C140.5 (9)
C2—C3—C4—C50.4 (10)C12—C13—C14—C15−0.5 (9)
C3—C4—C5—N6−0.1 (9)C13—C14—C15—N160.2 (9)
C2—C1—N6—O7179.4 (5)C12—C11—N16—C15−0.3 (8)
S1—C1—N6—O7−0.9 (7)S3—C11—N16—C15−179.1 (4)
C2—C1—N6—C5−0.7 (8)C12—C11—N16—O17178.9 (5)
S1—C1—N6—C5179.1 (4)S3—C11—N16—O170.0 (7)
C4—C5—N6—C10.3 (9)C14—C15—N16—C110.2 (8)
C4—C5—N6—O7−179.7 (5)C14—C15—N16—O17−178.9 (5)
C1—N6—O7—Pt10.0 (6)C11—N16—O17—Pt2−5.9 (6)
C5—N6—O7—Pt1−180.0 (4)C15—N16—O17—Pt2173.3 (4)
S1—Pt1—O7—N60.6 (3)S3—Pt2—O17—N167.0 (3)
Cl1—Pt1—O7—N6−176.6 (3)Cl2—Pt2—O17—N16−172.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O17i0.982.433.351 (8)157
C9—H9B···Cl10.982.733.350 (6)121
C10—H10A···Cl1ii0.982.733.601 (7)149
C13—H13···O7iii0.952.373.268 (8)158
C15—H15···O8iv0.952.393.271 (7)155
C19—H19A···O8v0.982.543.456 (7)155
C20—H20A···O18vi0.982.493.460 (8)172
C20—H20B···Cl20.982.753.366 (7)122

Symmetry codes: (i) x, y+1, z−1; (ii) −x+1, −y+1, −z; (iii) x−1, y, z+1; (iv) x, y−1, z+1; (v) x, y−1, z; (vi) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2615).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr.129, 145–150.
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  • Dyksterhouse, R. M., Howell, B. A. & Squattrito, P. J. (2000). Acta Cryst. C56, 64–66. [PubMed]
  • Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
  • Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc.113, 5099–5100.
  • Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.
  • Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
  • Loehrer, P. J., William, S. D. & Einhorn, L. H. (1988). J. Natl Cancer Inst.80, 1373–1376. [PubMed]
  • Ohms, U., Guth, H., Kutoglu, A. & Scheringer, C. (1982). Acta Cryst. B38, 831–834.
  • Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.
  • Weiss, R. B. & Christian, M. C. (1993). Drugs, 46, 360–377. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography