PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m966.
Published online 2008 June 28. doi:  10.1107/S1600536808018862
PMCID: PMC2961883

catena-Poly[[dichloridonickel(II)]-μ-1,3-di-4-pyridylpropane]

Abstract

The title compound, [NiCl2(C13H14N2)]n, is a one-dimensional polymer built up from alternating NiCl2 units and bridging 1,3-di-4-pyridylpropane ligands. The Ni atom has a distorted tetra­hedral coordination formed by the Cl atoms and two N atoms from two ligands. A mirror plane pases through the central methylene group of the propyl chain.

Related literature

For a closely related structure, see: Zhang & Yu (2007 [triangle]). For related literature, see: Carlucci et al. (2002 [triangle]); Hennigar et al. (1997 [triangle]); Yaghi et al. (1998 [triangle]); Dalbavie et al. (2002 [triangle]); Ghosh et al. (2006 [triangle]); Marshall & Grushin (2005 [triangle]); Masood et al. (1994 [triangle]); McConnell & Nuttall (1978 [triangle]); Wu et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m966-scheme1.jpg

Experimental

Crystal data

  • [NiCl2(C13H14N2)]
  • M r = 327.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m966-efi1.jpg
  • a = 5.1928 (17) Å
  • b = 12.972 (4) Å
  • c = 10.492 (3) Å
  • β = 93.588 (6)°
  • V = 705.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.74 mm−1
  • T = 298 (2) K
  • 0.25 × 0.20 × 0.16 mm

Data collection

  • Bruker APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.671, T max = 0.769
  • 3581 measured reflections
  • 1328 independent reflections
  • 763 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.067
  • S = 0.87
  • 1328 reflections
  • 88 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018862/dn2360sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018862/dn2360Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to ShangLuo University for financial support.

supplementary crystallographic information

Comment

Recent years have seen the evolution of a new class of coordination polymers known collectively as metal organic framework materials (Yaghi et al., 1998). The most common approach for producing coordination polymers and metal organic framework materials is through the self-assembly of metal centers with appropriate organic linker species to promote extended topologies (Hennigar et al., 1997). Conformationally flexibly ligands are typical building elements in the molecular interlocked/intertwined species. Some work on the self-assembly of coordination networks have been reported in the presence of 1,3-di-4-pyridylpropane (bpp) ligand (Carlucci et al., 2002). In this paper, we report here the synthesis and crystal structure of the title compound (I).

The Ni atom in the title complex has a distorted tetrahedral coordination formed by the chlorine atoms and two nitrogen from two separate bpp ligands (Fig. 1). The distances of Ni1—Cl and Ni1—Cl are 2.2533 (17) and 2.2382 (16)Å , respectively. Figure 1 show that this one-dimensional polymer built up from alternating (NiCl2) units and bridging 1,3-di-4-pyridylpropane ligands. Some other NiCl2 complexes with tetrahedral coordination geometries have been reported (Wu et al., 1999; Dalbavie et al., 2002; Masood et al., 1994; McConnell & Nuttall, 1978 ; Ghosh et al., 2006; Marshall & Grushin, 2005).

Experimental

Bpp (0.21, 0.1 mmol), NiCl2 (0.22 g, 0.012 mmol), were added in a mixed solvent of methanol and acetonitrile, the mixture was heated for six hours under reflux. during the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, a weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of (I), showing the atom labellinging scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

[NiCl2(C13H14N2)]F000 = 336
Mr = 327.87Dx = 1.544 Mg m3
Monoclinic, P21/mMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1328 reflections
a = 5.1928 (17) Åθ = 2.5–25.2º
b = 12.972 (4) ŵ = 1.74 mm1
c = 10.492 (3) ÅT = 298 (2) K
β = 93.588 (6)ºBloc, green
V = 705.3 (4) Å30.25 × 0.20 × 0.16 mm
Z = 2

Data collection

Bruker APEX area-detector diffractometer1328 independent reflections
Radiation source: fine-focus sealed tube763 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.046
T = 298(2) Kθmax = 25.2º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→5
Tmin = 0.671, Tmax = 0.769k = −13→15
3581 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.067  w = 1/[σ2(Fo2) + (0.009P)2 + 0.821P] where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
1328 reflectionsΔρmax = 0.44 e Å3
88 parametersΔρmin = −0.44 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.45214 (16)0.75000.22234 (6)0.0554 (3)
Cl10.7422 (3)0.75000.39091 (12)0.0566 (4)
Cl20.5444 (3)0.75000.01676 (12)0.0654 (5)
N10.2418 (6)0.6191 (2)0.2414 (3)0.0443 (8)
C10.2869 (7)0.5560 (3)0.3416 (3)0.0501 (10)
H10.42090.57190.40130.060*
C3−0.0579 (7)0.4430 (3)0.2738 (3)0.0445 (10)
C50.0501 (8)0.5930 (3)0.1581 (3)0.0555 (11)
H50.01710.63490.08710.067*
C4−0.1015 (8)0.5079 (3)0.1707 (3)0.0546 (11)
H4−0.23440.49390.10970.066*
C20.1436 (8)0.4690 (3)0.3594 (3)0.0521 (11)
H20.18270.42710.43000.063*
C7−0.0598 (10)0.25000.2643 (4)0.0462 (14)
H7A−0.01750.25000.17550.055*
H7B0.10050.25000.31690.055*
C6−0.2131 (7)0.3473 (3)0.2915 (3)0.0521 (11)
H6A−0.36770.34950.23470.063*
H6B−0.26580.34480.37860.063*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0726 (7)0.0426 (4)0.0503 (4)0.000−0.0005 (4)0.000
Cl10.0671 (12)0.0479 (8)0.0534 (8)0.000−0.0083 (7)0.000
Cl20.0733 (13)0.0780 (10)0.0444 (8)0.000−0.0006 (7)0.000
N10.052 (2)0.0332 (17)0.0466 (17)0.0034 (16)−0.0023 (16)−0.0024 (14)
C10.050 (3)0.047 (2)0.052 (2)0.003 (2)−0.0080 (19)0.0003 (19)
C30.049 (3)0.030 (2)0.055 (2)0.006 (2)0.003 (2)−0.0070 (17)
C50.070 (3)0.042 (2)0.053 (2)0.003 (2)−0.009 (2)0.0027 (19)
C40.062 (3)0.047 (2)0.052 (2)0.001 (2)−0.014 (2)−0.0052 (19)
C20.066 (3)0.039 (2)0.050 (2)0.005 (2)−0.007 (2)0.0072 (18)
C70.054 (4)0.034 (3)0.051 (3)0.0000.000 (3)0.000
C60.046 (3)0.043 (2)0.068 (3)−0.001 (2)0.004 (2)−0.0085 (19)

Geometric parameters (Å, °)

Ni1—N12.036 (3)C5—C41.366 (5)
Ni1—N1i2.036 (3)C5—H50.9300
Ni1—Cl22.2384 (16)C4—H40.9300
Ni1—Cl12.2503 (16)C2—H20.9300
N1—C51.327 (4)C7—C6ii1.529 (4)
N1—C11.341 (4)C7—C61.529 (4)
C1—C21.372 (5)C7—H7A0.9700
C1—H10.9300C7—H7B0.9700
C3—C21.377 (5)C6—H6A0.9700
C3—C41.378 (4)C6—H6B0.9700
C3—C61.499 (5)
N1—Ni1—N1i113.06 (17)C5—C4—C3120.1 (4)
N1—Ni1—Cl2104.07 (8)C5—C4—H4119.9
N1i—Ni1—Cl2104.07 (8)C3—C4—H4119.9
N1—Ni1—Cl1105.05 (9)C1—C2—C3120.5 (3)
N1i—Ni1—Cl1105.05 (9)C1—C2—H2119.7
Cl2—Ni1—Cl1125.74 (7)C3—C2—H2119.7
C5—N1—C1116.6 (3)C6ii—C7—C6111.3 (4)
C5—N1—Ni1122.2 (2)C6ii—C7—H7A109.4
C1—N1—Ni1121.1 (3)C6—C7—H7A109.4
N1—C1—C2122.6 (3)C6ii—C7—H7B109.4
N1—C1—H1118.7C6—C7—H7B109.4
C2—C1—H1118.7H7A—C7—H7B108.0
C2—C3—C4116.3 (4)C3—C6—C7111.7 (3)
C2—C3—C6120.9 (3)C3—C6—H6A109.3
C4—C3—C6122.7 (4)C7—C6—H6A109.3
N1—C5—C4123.7 (3)C3—C6—H6B109.3
N1—C5—H5118.1C7—C6—H6B109.3
C4—C5—H5118.1H6A—C6—H6B107.9

Symmetry codes: (i) x, −y+3/2, z; (ii) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2360).

References

  • Bruker (1998). SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129.
  • Dalbavie, J. O., Regnouf-de-Vains, J. B., Lamartine, R., Perrin, R., Lecocq, L. & Fenet, B. (2002). Eur. J. Inorg. Chem pp. 901–909.
  • Ghosh, T., Maiya, B. G. & Samanta, A. (2006). Dalton Trans pp. 795–802. [PubMed]
  • Hennigar, T. L., MacQuarrie, D. C., Losier, P., Gogers, R. D. & Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl.36, 972–973.
  • Marshall, W. J. & Grushin, V. V. (2005). Can. J. Chem 83, 640–645.
  • Masood, Md. A., Hodgson, D. J. & Zacharias, P. S. (1994). Inorg. Chim. Acta, 221, 99–103.
  • McConnell, A. A. & Nuttall, R. H. (1978). J. Mol. Struct 49, 207–213.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, H. P., Janiak, C., Rheinwald, G. & Lang, H. (1999). J. Chem. Soc. Dalton Trans pp. 183–190.
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.
  • Zhang, L. & Yu, J. (2007). Acta Cryst. E63, m1759.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography