PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m958–m959.
Published online 2008 June 25. doi:  10.1107/S1600536808018473
PMCID: PMC2961882

Hexa-μ2-bromido-μ4-oxo-tetra­kis[(nicotine)copper(II)]

Abstract

In the title compound, hexa-μ2-bromido-μ4-oxo-tetra­kis{[3-(1-methyl-2-pyrrolidin­yl)pyridine-κN]copper(II)}, [Cu4Br6O(C10H14N2)4], the four Cu atoms are tetra­hedrally arranged around the O atom at the cluster center. The Cu and coordinated N atoms lie along directions which correspond to four of the eight threefold axial directions of a regular octa­hedron. Each Cu atom lies at the center of a trigonal bipyramid, with the O atom and the pyridine N atom of a nicotine ligand in the axial positions and three Br atoms in the equatorial positions. Average bond distances are: Cu—N = 1.979 (8), Cu—O = 1.931 (6), Cu—Br = 2.514 (14) and Cu(...)Cu = 3.154 (6) ÅÅ. The configuration of the nicotine ligands is that of the trans diastereomer. In addition, the crystal structure contains five intra­molecular C—H(...)Br hydrogen bonds, which determine (or support) the orientation of the nicotine mol­ecules relative to their three equatorial Br atoms. One of the nicotine mol­ecules has two C—H(...)Br contacts, while the other three nicotine mol­ecules show only one C—H(...)Br bond each. Two other inter­molecular C—H(...)Br hydrogen bonds connect the complex mol­ecules, forming ribbons which extend in the b- and c-axis directions.

Related literature

For related literature, see: Udupa & Krebs (1980 [triangle]); Meyer et al. (2006 [triangle]); Haendler (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m958-scheme1.jpg

Experimental

Crystal data

  • [Cu4Br6O(C10H14N2)4]
  • M r = 1398.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m958-efi1.jpg
  • a = 12.9505 (5) Å
  • b = 13.2850 (3) Å
  • c = 14.2555 (2) Å
  • β = 92.221 (2)°
  • V = 2450.78 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.64 mm−1
  • T = 123 (2) K
  • 0.20 × 0.16 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.29, T max = 0.40
  • 22605 measured reflections
  • 9345 independent reflections
  • 8124 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.122
  • S = 1.08
  • 9345 reflections
  • 536 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.82 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 4309 Friedel pairs
  • Flack parameter: 0.058 (15)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018473/si2090sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018473/si2090Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 50572039) and the Natural Science Foundation of Jiangsu Province (BK2006199).

supplementary crystallographic information

Comment

Numerous clusters of nicotine [3-(1-methyl-2- pyrrolidinyl)pyridine] were reported to form molecular complexes with metals. But the crystal structures of the clusters containing both nicotine ligands and bromine atoms have not been reported so far. In order to explore the chemistry of nicotine clusters extensively, we synthesized the title cluster.

As illustrated in Fig. 1, the title compound has an O atom at the center of a tetrahedron of Cu atoms. The same O atom also lies at the center of a slightly distorted octahedron of Br atoms. This octahedron is in turn surrounded tetrahedrally by the four pyridine N atoms of the nicotine ligands, in parallel orientation with the Cu tetrahedron. The Cu atoms are bridged by the six Br atoms. The net effect is to place each Cu atom at the center of a slightly distorted trigonal bipyramid; the four bipyramids have six edges in common. The central O atom and the pyridine N atoms are in the axial positions, while the bridging Br atoms are in the equatorial positions. In addition, the absolut configurations of C6, C16, C26, and C36 can be given as S* (the * denotes unknown absolute configuration, but for the chosen coordinates the form appears to be S). The structure also contains five intramolecular and two intermolecular C—H···Br hydrogen bonds (Table 1). The intramolecular hydrogen bonds determine (or support) the orientation of the nicotine molecules relative to their equatorial three Br atoms. One of the nicotine molecules has two C—H···Br contacts: C21—H21A···Br2 and C25—H25A···Br6, the other three nicotine molecules show only one H bond. Two other intermolecular hydrogen bonds, C30—H30C···Br6 and C39—H39B···Br5, connect the complexes to form ribbons which extend in the b and c direction.

Examples of closely related compounds containing nicotine ligands include a mercury(II) chain polymer (Udupa & Krebs, 1980), a helical silver(I) coordination polymer (Meyer et al., 2006) and a chloride-nicotine copper(II) complex (Haendler, 1990).

Experimental

CuBr (1 mmol) was added to a solution of 4-cyanopyridine(1 mmol) in dmf (5 ml). The resulting mixture was stirred for about 10 min after which an orange precipitate formed. Nicotine (1 ml) was then added dropwise to the reaction mixture and stirring was continued, during which time the precipitate was dissolved, giving an orange solution.This solution then changed its colour to dark green with 30 min further stirring. The resulting solution was filtered and the dark green filtrate was transfered into a test tube and carefully laid on the surface of the filtrate with i-PrOH (10 ml). Dark-brown block crystals were obtained after 30 days. Yield: 0.158 g, 68% (based on CuBr used). Analysis: Found: C 34.52, H 3.90, N 7.90%; Calculated for C40H56Br6Cu4N8O: C 34.35, H 4.04, N 8.01%.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The Flack parameter used in the refinement is 0.058 (15) with 4309 Friedel pairs.

Figures

Fig. 1.
Molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.

Crystal data

[Cu4Br6O(C10H14N2)4]F000 = 1372
Mr = 1398.55Dx = 1.895 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8714 reflections
a = 12.9505 (5) Åθ = 2.1–26.4º
b = 13.2850 (3) ŵ = 6.64 mm1
c = 14.2555 (2) ÅT = 123 (2) K
β = 92.221 (2)ºBlock, dark brown
V = 2450.78 (11) Å30.20 × 0.16 × 0.14 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer9345 independent reflections
Radiation source: sealed tube8124 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
T = 123(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.4º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −15→15
Tmin = 0.29, Tmax = 0.40k = −16→16
22605 measured reflectionsl = −17→17

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052  w = 1/[σ2(Fo2) + (0.07P)2 + 1.99P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.64 e Å3
9345 reflectionsΔρmin = −0.82 e Å3
536 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 4309 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.058 (15)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.28823 (7)0.58585 (6)0.76809 (6)0.02612 (19)
Br20.01897 (6)0.79441 (7)0.75355 (6)0.0291 (2)
Br30.25573 (7)0.84149 (7)0.95621 (6)0.0305 (2)
Br40.22450 (7)0.78513 (7)0.52996 (6)0.02774 (19)
Br50.48949 (6)0.84084 (7)0.72986 (6)0.03022 (19)
Br60.23762 (7)1.04233 (7)0.72339 (7)0.0336 (2)
C10.1183 (7)0.6417 (7)1.0069 (5)0.0247 (18)
H1A0.15830.69471.03440.030*
C20.0695 (7)0.5719 (8)1.0658 (7)0.033 (2)
C3−0.0037 (10)0.5038 (8)1.0229 (8)0.051 (3)
H3A−0.04800.46541.06060.061*
C4−0.0096 (8)0.4941 (9)0.9250 (8)0.048 (3)
H4A−0.04920.44170.89600.057*
C50.0429 (7)0.5616 (7)0.8717 (7)0.030 (2)
H5A0.03410.55900.80530.036*
C60.0778 (8)0.5910 (8)1.1674 (7)0.041 (2)
H6A0.04880.53151.20040.049*
C70.1780 (8)0.6407 (9)1.2997 (7)0.041 (2)
H7A0.17090.58401.34410.049*
H7B0.23910.68151.31910.049*
C80.0844 (7)0.7018 (7)1.2933 (6)0.031 (2)
H8A0.10320.77391.29860.038*
H8B0.04000.68501.34610.038*
C90.0258 (9)0.6846 (9)1.2030 (8)0.046 (3)
H9A0.03320.74191.15940.055*
H9B−0.04850.67281.21300.055*
C100.2290 (8)0.5007 (8)1.2051 (7)0.038 (2)
H10A0.19010.45981.24870.057*
H10B0.30150.50431.22720.057*
H10C0.22470.47011.14250.057*
C110.5028 (7)0.5877 (8)0.6410 (6)0.035 (2)
H11A0.50970.59430.70730.042*
C120.5629 (8)0.5209 (7)0.5960 (7)0.036 (2)
C130.5644 (7)0.5044 (8)0.4954 (7)0.034 (2)
H13A0.60710.45650.46620.041*
C140.4928 (8)0.5699 (9)0.4459 (7)0.047 (3)
H14A0.48520.56750.37940.056*
C150.4327 (8)0.6395 (9)0.4991 (7)0.043 (3)
H15A0.38950.68530.46470.052*
C160.6298 (7)0.4506 (8)0.6531 (7)0.036 (2)
H16A0.67400.41200.60970.044*
C170.7272 (11)0.4266 (9)0.7973 (8)0.053 (3)
H17A0.75110.46120.85570.063*
H17B0.78240.38110.77660.063*
C180.6280 (9)0.3701 (8)0.8109 (7)0.046 (3)
H18A0.58750.40300.85980.056*
H18B0.64280.29990.83050.056*
C190.5671 (9)0.3718 (8)0.7151 (8)0.048 (3)
H19A0.49510.39460.72270.058*
H19B0.56600.30420.68580.058*
C200.7870 (8)0.5561 (10)0.6860 (9)0.053 (3)
H20A0.80670.52640.62640.080*
H20B0.84510.55130.73190.080*
H20C0.76870.62700.67620.080*
C21−0.0384 (8)0.9135 (10)0.5492 (8)0.048 (3)
H21A−0.05470.85000.57570.057*
C22−0.1084 (9)0.9577 (10)0.4939 (7)0.045 (3)
C23−0.0812 (7)1.0480 (8)0.4511 (7)0.035 (2)
H23A−0.12741.07820.40600.042*
C240.0026 (8)1.0890 (9)0.4715 (7)0.045 (3)
H24A0.01721.15210.44350.054*
C250.0777 (7)1.0463 (8)0.5346 (6)0.033 (2)
H25A0.14061.07960.55150.039*
C26−0.2124 (9)0.9171 (8)0.4718 (7)0.048 (3)
H26A−0.25320.96360.42940.058*
C27−0.2737 (10)0.8910 (10)0.5626 (9)0.057 (3)
H27A−0.31460.94890.58440.068*
H27B−0.22750.86620.61450.068*
C28−0.3466 (7)0.8022 (8)0.5179 (7)0.036 (2)
H28A−0.34590.74390.56120.043*
H28B−0.41860.82680.51070.043*
C29−0.3103 (8)0.7697 (9)0.4250 (8)0.043 (2)
H29A−0.35400.79850.37320.051*
H29B−0.31040.69540.41940.051*
C30−0.1700 (9)0.8187 (8)0.3300 (8)0.047 (3)
H30A−0.09990.84600.32630.070*
H30B−0.21880.86300.29570.070*
H30C−0.17260.75130.30200.070*
C310.3732 (8)1.0704 (7)0.9282 (8)0.039 (2)
H31A0.30011.06590.92900.047*
C320.4159 (9)1.1595 (8)0.9843 (8)0.044 (3)
C330.5149 (8)1.1545 (8)0.9841 (8)0.045 (3)
H330.55171.19551.02860.054*
C340.5729 (7)1.0972 (10)0.9273 (7)0.045 (3)
H34A0.64231.11530.91640.054*
C350.5316 (9)1.0155 (9)0.8872 (9)0.052 (3)
H35A0.57290.96440.86100.063*
C360.3478 (8)1.2254 (9)1.0366 (7)0.041 (2)
H36A0.38571.29001.04850.049*
C370.1705 (8)1.2749 (8)1.0538 (6)0.038 (2)
H37A0.10511.23961.03670.045*
H37B0.15791.34831.05530.045*
C380.2208 (9)1.2342 (9)1.1539 (7)0.046 (3)
H38A0.23441.29081.19780.055*
H38B0.17401.18561.18340.055*
C390.3163 (9)1.1860 (9)1.1298 (9)0.051 (3)
H39A0.30651.11211.12630.061*
H39B0.37091.20051.17840.061*
C400.2600 (8)1.3053 (9)0.9133 (7)0.042 (2)
H40A0.31361.27420.87630.062*
H40B0.28051.37410.93010.062*
H40C0.19471.30680.87620.062*
Cu10.18408 (8)0.72680 (8)0.82869 (7)0.0265 (2)
Cu20.34250 (8)0.73347 (8)0.66603 (7)0.0249 (2)
Cu30.15501 (8)0.88478 (8)0.66313 (7)0.0257 (2)
Cu40.33722 (8)0.90983 (8)0.81346 (7)0.0276 (2)
N10.1092 (6)0.6345 (6)0.9127 (5)0.0299 (16)
N20.1845 (8)0.6041 (8)1.2003 (7)0.052 (2)
N30.4330 (6)0.6449 (7)0.5918 (5)0.0346 (19)
N40.6961 (7)0.5007 (7)0.7219 (6)0.039 (2)
N50.0533 (6)0.9531 (7)0.5697 (5)0.0324 (18)
N6−0.1965 (6)0.8129 (7)0.4240 (6)0.038 (2)
N70.4085 (7)1.0081 (6)0.8855 (6)0.038 (2)
N80.2476 (7)1.2506 (8)0.9930 (6)0.046 (2)
O10.2551 (5)0.8122 (5)0.7435 (4)0.0287 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0274 (4)0.0272 (4)0.0235 (4)0.0058 (3)−0.0023 (3)−0.0028 (3)
Br20.0265 (4)0.0342 (5)0.0260 (4)0.0033 (4)−0.0049 (3)−0.0022 (4)
Br30.0380 (5)0.0280 (4)0.0250 (4)0.0050 (4)−0.0059 (3)−0.0036 (4)
Br40.0294 (4)0.0312 (4)0.0222 (4)0.0008 (4)−0.0041 (3)0.0007 (4)
Br50.0246 (4)0.0349 (5)0.0309 (4)−0.0007 (4)−0.0019 (3)−0.0025 (4)
Br60.0358 (5)0.0292 (5)0.0346 (5)0.0034 (4)−0.0126 (4)−0.0033 (4)
C10.034 (5)0.028 (4)0.012 (3)−0.002 (4)−0.008 (3)−0.008 (3)
C20.024 (4)0.039 (6)0.036 (5)−0.003 (4)0.005 (4)−0.012 (4)
C30.077 (8)0.030 (5)0.047 (6)0.012 (6)0.011 (6)−0.022 (5)
C40.035 (6)0.051 (7)0.058 (7)−0.016 (5)0.008 (5)−0.011 (6)
C50.024 (4)0.032 (5)0.036 (5)−0.008 (4)0.018 (4)−0.018 (4)
C60.052 (6)0.041 (6)0.031 (5)−0.018 (5)0.013 (4)0.008 (4)
C70.047 (6)0.045 (6)0.030 (5)0.010 (5)−0.005 (4)0.000 (4)
C80.035 (5)0.030 (5)0.030 (4)−0.013 (4)0.004 (4)0.004 (4)
C90.042 (6)0.054 (7)0.040 (5)−0.012 (5)−0.006 (5)−0.005 (5)
C100.031 (5)0.045 (6)0.038 (5)0.021 (4)−0.007 (4)−0.001 (4)
C110.027 (4)0.061 (7)0.016 (4)0.005 (5)−0.006 (3)−0.009 (4)
C120.036 (5)0.032 (5)0.040 (5)0.012 (4)−0.013 (4)−0.004 (4)
C130.022 (4)0.037 (5)0.044 (6)0.002 (4)0.005 (4)−0.012 (4)
C140.048 (6)0.056 (7)0.036 (5)0.020 (5)0.008 (5)−0.013 (5)
C150.033 (5)0.060 (7)0.036 (5)0.014 (5)0.005 (4)−0.011 (5)
C160.033 (5)0.035 (5)0.039 (5)0.019 (4)−0.010 (4)−0.013 (4)
C170.082 (9)0.038 (6)0.036 (5)0.006 (6)−0.008 (6)0.024 (5)
C180.068 (7)0.036 (6)0.034 (5)−0.029 (5)−0.004 (5)0.007 (4)
C190.044 (6)0.037 (6)0.062 (7)−0.001 (5)−0.010 (5)0.008 (5)
C200.036 (6)0.065 (8)0.060 (7)0.014 (6)0.017 (5)0.043 (6)
C210.041 (6)0.056 (7)0.046 (6)−0.006 (5)0.000 (5)0.025 (5)
C220.044 (6)0.058 (7)0.033 (5)0.014 (5)−0.005 (5)0.000 (5)
C230.032 (5)0.039 (5)0.034 (5)0.013 (4)−0.012 (4)−0.020 (4)
C240.034 (5)0.056 (7)0.044 (6)0.017 (5)−0.006 (5)0.021 (5)
C250.028 (5)0.038 (5)0.032 (4)0.022 (4)−0.006 (4)−0.003 (4)
C260.064 (8)0.041 (6)0.038 (5)0.019 (6)−0.023 (5)0.005 (5)
C270.053 (7)0.059 (8)0.059 (7)0.001 (6)0.013 (6)−0.014 (6)
C280.032 (5)0.044 (6)0.032 (5)−0.007 (4)0.006 (4)−0.012 (4)
C290.037 (5)0.042 (6)0.049 (6)−0.008 (5)−0.002 (4)−0.013 (5)
C300.058 (7)0.032 (6)0.049 (6)−0.006 (5)−0.010 (5)−0.002 (4)
C310.035 (5)0.022 (5)0.062 (7)−0.003 (4)0.008 (5)−0.002 (5)
C320.051 (7)0.030 (5)0.048 (6)0.015 (5)−0.022 (5)−0.009 (5)
C330.042 (6)0.043 (6)0.047 (6)0.018 (5)−0.023 (5)−0.002 (5)
C340.012 (4)0.089 (9)0.036 (5)−0.003 (5)0.001 (4)−0.015 (6)
C350.036 (6)0.054 (7)0.066 (8)−0.014 (5)−0.004 (5)−0.033 (6)
C360.038 (5)0.046 (6)0.037 (5)−0.003 (5)−0.006 (4)−0.012 (5)
C370.036 (5)0.045 (6)0.033 (5)0.012 (5)0.017 (4)0.008 (4)
C380.057 (7)0.053 (7)0.027 (5)−0.010 (6)−0.009 (4)0.011 (5)
C390.043 (6)0.045 (6)0.064 (7)−0.017 (5)−0.003 (5)0.009 (6)
C400.041 (5)0.053 (7)0.033 (5)0.014 (5)0.018 (4)−0.008 (4)
Cu10.0317 (5)0.0242 (5)0.0233 (5)0.0076 (5)−0.0020 (4)−0.0027 (4)
Cu20.0231 (5)0.0273 (5)0.0242 (5)0.0048 (4)−0.0024 (4)−0.0038 (4)
Cu30.0272 (5)0.0249 (5)0.0243 (5)0.0030 (4)−0.0068 (4)−0.0012 (4)
Cu40.0290 (6)0.0259 (6)0.0273 (5)−0.0001 (4)−0.0066 (4)−0.0060 (4)
N10.028 (4)0.029 (4)0.032 (4)0.000 (3)−0.001 (3)0.000 (3)
N20.060 (6)0.049 (6)0.047 (5)0.016 (5)0.008 (5)−0.007 (4)
N30.031 (4)0.043 (5)0.031 (4)0.009 (4)0.023 (3)0.016 (3)
N40.041 (5)0.044 (5)0.030 (4)−0.004 (4)−0.012 (4)0.017 (4)
N50.030 (4)0.047 (5)0.020 (3)0.002 (4)0.002 (3)0.005 (3)
N60.031 (4)0.048 (5)0.037 (4)0.012 (4)0.004 (3)0.011 (4)
N70.047 (5)0.021 (4)0.045 (5)−0.001 (4)−0.016 (4)−0.008 (4)
N80.042 (5)0.059 (6)0.036 (4)0.022 (4)0.001 (4)−0.021 (4)
O10.032 (3)0.028 (3)0.026 (3)0.000 (2)−0.005 (2)−0.005 (2)

Geometric parameters (Å, °)

Br1—Cu12.4824 (13)C20—H20B0.9800
Br1—Cu22.5565 (14)C20—H20C0.9800
Br2—Cu12.5197 (13)C21—C221.316 (15)
Br2—Cu32.5264 (14)C21—N51.321 (14)
Br3—Cu42.4991 (15)C21—H21A0.9500
Br3—Cu12.5212 (13)C22—C231.397 (17)
Br4—Cu32.5097 (13)C22—C261.474 (17)
Br4—Cu22.5178 (12)C23—C241.239 (15)
Br5—Cu42.5162 (14)C23—H23A0.9500
Br5—Cu22.5203 (14)C24—C251.419 (12)
Br6—Cu32.4883 (14)C24—H24A0.9500
Br6—Cu42.5066 (14)C25—N51.377 (14)
C1—N11.348 (10)C25—H25A0.9500
C1—C21.416 (13)C26—N61.561 (14)
C1—H1A0.9500C26—C271.583 (17)
C2—C31.430 (15)C26—H26A1.0000
C2—C61.471 (13)C27—C281.625 (16)
C3—C41.401 (16)C27—H27A0.9900
C3—H3A0.9500C27—H27B0.9900
C4—C51.371 (15)C28—C291.488 (14)
C4—H4A0.9500C28—H28A0.9900
C5—N11.406 (11)C28—H28B0.9900
C5—H5A0.9500C29—N61.582 (13)
C6—N21.453 (14)C29—H29A0.9900
C6—C91.510 (16)C29—H29B0.9900
C6—H6A1.0000C30—N61.399 (14)
C7—C81.459 (14)C30—H30A0.9800
C7—N21.503 (13)C30—H30B0.9800
C7—H7A0.9900C30—H30C0.9800
C7—H7B0.9900C31—N71.133 (13)
C8—C91.486 (13)C31—C321.520 (14)
C8—H8A0.9900C31—H31A0.9500
C8—H8B0.9900C32—C331.285 (16)
C9—H9A0.9900C32—C361.467 (15)
C9—H9B0.9900C33—C341.358 (15)
C10—N21.490 (14)C33—H330.9500
C10—H10A0.9800C34—C351.329 (16)
C10—H10B0.9800C34—H34A0.9500
C10—H10C0.9800C35—N71.596 (14)
C11—N31.355 (12)C35—H35A0.9500
C11—C121.358 (14)C36—N81.456 (13)
C11—H11A0.9500C36—C391.499 (15)
C12—C131.451 (14)C36—H36A1.0000
C12—C161.494 (12)C37—N81.384 (12)
C13—C141.437 (15)C37—C381.637 (13)
C13—H13A0.9500C37—H37A0.9900
C14—C151.443 (14)C37—H37B0.9900
C14—H14A0.9500C38—C391.446 (17)
C15—N31.324 (12)C38—H38A0.9900
C15—H15A0.9500C38—H38B0.9900
C16—N41.441 (12)C39—H39A0.9900
C16—C191.611 (16)C39—H39B0.9900
C16—H16A1.0000C40—N81.364 (14)
C17—N41.501 (11)C40—H40A0.9800
C17—C181.507 (17)C40—H40B0.9800
C17—H17A0.9900C40—H40C0.9800
C17—H17B0.9900Cu1—O11.923 (7)
C18—C191.550 (14)Cu1—N11.992 (8)
C18—H18A0.9900Cu2—O11.921 (6)
C18—H18B0.9900Cu2—N31.993 (8)
C19—H19A0.9900Cu3—O11.951 (6)
C19—H19B0.9900Cu3—N52.049 (7)
C20—N41.495 (13)Cu4—N71.882 (8)
C20—H20A0.9800Cu4—O11.930 (6)
Cu1—Br1—Cu277.55 (4)H28A—C28—H28B108.0
Cu1—Br2—Cu377.83 (4)C28—C29—N6103.2 (7)
Cu4—Br3—Cu177.74 (4)C28—C29—H29A111.1
Cu3—Br4—Cu277.63 (4)N6—C29—H29A111.1
Cu4—Br5—Cu277.43 (4)C28—C29—H29B111.1
Cu3—Br6—Cu477.99 (4)N6—C29—H29B111.1
N1—C1—C2121.4 (8)H29A—C29—H29B109.1
N1—C1—H1A119.3N6—C30—H30A109.5
C2—C1—H1A119.3N6—C30—H30B109.5
C1—C2—C3117.7 (9)H30A—C30—H30B109.5
C1—C2—C6117.0 (8)N6—C30—H30C109.5
C3—C2—C6123.5 (9)H30A—C30—H30C109.5
C4—C3—C2119.6 (11)H30B—C30—H30C109.5
C4—C3—H3A120.2N7—C31—C32134.8 (10)
C2—C3—H3A120.2N7—C31—H31A112.6
C5—C4—C3118.9 (10)C32—C31—H31A112.6
C5—C4—H4A120.6C33—C32—C36130.6 (10)
C3—C4—H4A120.6C33—C32—C31107.5 (10)
C4—C5—N1121.9 (9)C36—C32—C31121.3 (10)
C4—C5—H5A119.1C32—C33—C34127.2 (11)
N1—C5—H5A119.1C32—C33—H33116.4
N2—C6—C2111.8 (9)C34—C33—H33116.4
N2—C6—C9103.0 (8)C35—C34—C33119.5 (10)
C2—C6—C9117.1 (9)C35—C34—H34A120.3
N2—C6—H6A108.2C33—C34—H34A120.3
C2—C6—H6A108.2C34—C35—N7116.2 (10)
C9—C6—H6A108.2C34—C35—H35A121.9
C8—C7—N2101.4 (8)N7—C35—H35A121.9
C8—C7—H7A111.5N8—C36—C32117.6 (8)
N2—C7—H7A111.5N8—C36—C39100.9 (9)
C8—C7—H7B111.5C32—C36—C39115.6 (10)
N2—C7—H7B111.5N8—C36—H36A107.4
H7A—C7—H7B109.3C32—C36—H36A107.4
C7—C8—C9111.3 (9)C39—C36—H36A107.4
C7—C8—H8A109.4N8—C37—C38101.3 (8)
C9—C8—H8A109.4N8—C37—H37A111.5
C7—C8—H8B109.4C38—C37—H37A111.5
C9—C8—H8B109.4N8—C37—H37B111.5
H8A—C8—H8B108.0C38—C37—H37B111.5
C8—C9—C6101.5 (9)H37A—C37—H37B109.3
C8—C9—H9A111.5C39—C38—C37104.7 (8)
C6—C9—H9A111.5C39—C38—H38A110.8
C8—C9—H9B111.5C37—C38—H38A110.8
C6—C9—H9B111.5C39—C38—H38B110.8
H9A—C9—H9B109.3C37—C38—H38B110.8
N2—C10—H10A109.5H38A—C38—H38B108.9
N2—C10—H10B109.5C38—C39—C36108.7 (10)
H10A—C10—H10B109.5C38—C39—H39A110.0
N2—C10—H10C109.5C36—C39—H39A110.0
H10A—C10—H10C109.5C38—C39—H39B110.0
H10B—C10—H10C109.5C36—C39—H39B110.0
N3—C11—C12120.3 (8)H39A—C39—H39B108.3
N3—C11—H11A119.9N8—C40—H40A109.5
C12—C11—H11A119.9N8—C40—H40B109.5
C11—C12—C13126.6 (8)H40A—C40—H40B109.5
C11—C12—C16118.8 (9)N8—C40—H40C109.5
C13—C12—C16114.5 (9)H40A—C40—H40C109.5
C14—C13—C12111.1 (8)H40B—C40—H40C109.5
C14—C13—H13A124.4O1—Cu1—N1177.7 (3)
C12—C13—H13A124.4O1—Cu1—Br186.9 (2)
C13—C14—C15118.7 (9)N1—Cu1—Br191.6 (2)
C13—C14—H14A120.6O1—Cu1—Br286.56 (19)
C15—C14—H14A120.6N1—Cu1—Br292.9 (2)
N3—C15—C14125.4 (10)Br1—Cu1—Br2125.77 (5)
N3—C15—H15A117.3O1—Cu1—Br385.83 (18)
C14—C15—H15A117.3N1—Cu1—Br396.5 (2)
N4—C16—C12113.6 (8)Br1—Cu1—Br3121.13 (5)
N4—C16—C19103.1 (8)Br2—Cu1—Br3111.94 (5)
C12—C16—C19114.3 (8)O1—Cu2—N3176.4 (3)
N4—C16—H16A108.5O1—Cu2—Br486.60 (18)
C12—C16—H16A108.5N3—Cu2—Br496.0 (2)
C19—C16—H16A108.5O1—Cu2—Br586.45 (19)
N4—C17—C18102.2 (9)N3—Cu2—Br594.3 (3)
N4—C17—H17A111.3Br4—Cu2—Br5123.46 (6)
C18—C17—H17A111.3O1—Cu2—Br184.8 (2)
N4—C17—H17B111.3N3—Cu2—Br191.7 (2)
C18—C17—H17B111.3Br4—Cu2—Br1118.39 (5)
H17A—C17—H17B109.2Br5—Cu2—Br1116.69 (5)
C17—C18—C19106.7 (8)O1—Cu3—N5175.1 (3)
C17—C18—H18A110.4O1—Cu3—Br686.91 (19)
C19—C18—H18A110.4N5—Cu3—Br696.3 (2)
C17—C18—H18B110.4O1—Cu3—Br486.20 (19)
C19—C18—H18B110.4N5—Cu3—Br489.0 (2)
H18A—C18—H18B108.6Br6—Cu3—Br4122.88 (5)
C18—C19—C16104.1 (8)O1—Cu3—Br285.78 (19)
C18—C19—H19A110.9N5—Cu3—Br295.7 (2)
C16—C19—H19A110.9Br6—Cu3—Br2121.51 (5)
C18—C19—H19B110.9Br4—Cu3—Br2114.38 (5)
C16—C19—H19B110.9N7—Cu4—O1175.9 (4)
H19A—C19—H19B109.0N7—Cu4—Br391.2 (3)
N4—C20—H20A109.5O1—Cu4—Br386.29 (19)
N4—C20—H20B109.5N7—Cu4—Br691.4 (2)
H20A—C20—H20B109.5O1—Cu4—Br686.83 (19)
N4—C20—H20C109.5Br3—Cu4—Br6116.56 (5)
H20A—C20—H20C109.5N7—Cu4—Br597.7 (3)
H20B—C20—H20C109.5O1—Cu4—Br586.36 (19)
C22—C21—N5123.1 (11)Br3—Cu4—Br5128.08 (5)
C22—C21—H21A118.5Br6—Cu4—Br5114.23 (5)
N5—C21—H21A118.5C1—N1—C5119.4 (8)
C21—C22—C23117.8 (11)C1—N1—Cu1122.0 (6)
C21—C22—C26124.5 (12)C5—N1—Cu1118.6 (6)
C23—C22—C26117.7 (9)C6—N2—C10105.4 (9)
C24—C23—C22120.6 (10)C6—N2—C7104.8 (9)
C24—C23—H23A119.7C10—N2—C7106.9 (8)
C22—C23—H23A119.7C15—N3—C11117.5 (8)
C23—C24—C25123.0 (11)C15—N3—Cu2125.7 (7)
C23—C24—H24A118.5C11—N3—Cu2116.8 (6)
C25—C24—H24A118.5C16—N4—C20116.8 (9)
N5—C25—C24115.4 (9)C16—N4—C17108.7 (8)
N5—C25—H25A122.3C20—N4—C17112.0 (8)
C24—C25—H25A122.3C21—N5—C25119.7 (8)
C22—C26—N6106.4 (9)C21—N5—Cu3121.1 (7)
C22—C26—C27112.9 (9)C25—N5—Cu3118.9 (6)
N6—C26—C27103.9 (9)C30—N6—C26114.2 (8)
C22—C26—H26A111.1C30—N6—C29106.9 (8)
N6—C26—H26A111.1C26—N6—C29100.3 (8)
C27—C26—H26A111.1C31—N7—C35111.7 (8)
C26—C27—C2898.1 (9)C31—N7—Cu4126.9 (8)
C26—C27—H27A112.1C35—N7—Cu4121.3 (6)
C28—C27—H27A112.1C40—N8—C37120.6 (9)
C26—C27—H27B112.1C40—N8—C36110.2 (9)
C28—C27—H27B112.1C37—N8—C36116.1 (8)
H27A—C27—H27B109.8Cu2—O1—Cu1110.4 (3)
C29—C28—C27111.1 (9)Cu2—O1—Cu4109.7 (3)
C29—C28—H28A109.4Cu1—O1—Cu4109.7 (3)
C27—C28—H28A109.4Cu2—O1—Cu3109.0 (3)
C29—C28—H28B109.4Cu1—O1—Cu3109.8 (3)
C27—C28—H28B109.4Cu4—O1—Cu3108.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···Br30.952.603.292 (9)130
C15—H15A···Br40.952.713.362 (10)126
C21—H21A···Br20.952.773.372 (10)122
C25—H25A···Br60.952.753.332 (9)120
C30—H30C···Br6i0.982.923.844 (10)158
C35—H35A···Br50.952.683.259 (10)120
C39—H39B···Br5ii0.992.883.764 (11)150

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2090).

References

  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Haendler, H. M. (1990). Acta Cryst. C46, 2054–2057.
  • Meyer, G., Berners, A. & Pantenburg, I. (2006). Z. Anorg. Allg. Chem.632, 34–35.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Udupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 40, 161–164.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography