PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m877.
Published online 2008 June 7. doi:  10.1107/S1600536808015961
PMCID: PMC2961881

Poly[hexa­aqua­tri-μ-malonato-didysprosium(III)]

Abstract

The title compound, [Dy2(C3H2O4)3(H2O)6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water mol­ecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water mol­ecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability.

Related literature

For related literature, see: Iglesias et al. (2003 [triangle]); Kim et al. (2003 [triangle]); Moulton & Zaworotko (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m877-scheme1.jpg

Experimental

Crystal data

  • [Dy2(C3H2O4)3(H2O)6]
  • M r = 739.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m877-efi2.jpg
  • a = 17.1805 (2) Å
  • b = 12.3124 (1) Å
  • c = 11.1541 (1) Å
  • β = 127.52 (2)°
  • V = 1871.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 8.02 mm−1
  • T = 296 (2) K
  • 0.11 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2004 [triangle]) T min = 0.435, T max = 0.529
  • 10051 measured reflections
  • 2136 independent reflections
  • 2001 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.053
  • S = 1.07
  • 2136 reflections
  • 132 parameters
  • 10 restraints
  • H-atom parameters constrained
  • Δρmax = 0.91 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015961/dn2344sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015961/dn2344Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Kim et al., 2003; Iglesias et al., 2003; Moulton & Zaworotko, 2001). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metals ions and bridging building blocks as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. Recently, we obtained the title compound, (I), by the hydrothermal reaction of Dy(NO3)3 with malonic acid in alkaline aqueous solution.

As illustrated in Fig. 1, in the asymmetric unit of complex (I), each DyIII centre is coordinated by six carboxyl O atoms from four malonate ligands, and three water molecules. The two unique malonate ligands act as two types of chelating and bridging modes: one lies on an inversion centre and uses each carboxylate group to bond to two DyIII ions; one uses three carboxyl O atoms to coordinate to two DyIII ions involving a six-membered chelate ring. The adjacent Dy···Dy separations are 4.303 (3), 6.600 (1) and 6.982 (2) Å respectively. The ligands link dysprosium centres to form a three-dimensional coordination polymer which is also stabilized by the extensive network of hydrogen bonding interactions (Fig. 2; Table 1).

Experimental

A mixture of Dy(NO3)3 (0.1 mmol), malonato acid (0.15 mmol), NaOH (0.1 mmol), water (10 ml) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated to and maintained at 433 K for 7 days, and then cooled to room temperature at 5 K h-1 to obtain the colorless block crystals.

Refinement

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.30 Å, and with Uiso(H) = 1.5 Ueq(O), and then were treated as riding mode. Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1-x, y, 3/2-y; (ii) 1/2-x, y-1/2, 1/2-z; (iii) 1/2-x, 1/2-y, 1-z]
Fig. 2.
The molecular packing showing the intra/intermolecular hydrogen bonding interactions as broken lines.

Crystal data

[Dy2(C3H2O4)3(H2O)6]F000 = 1392
Mr = 739.23Dx = 2.624 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6377 reflections
a = 17.1805 (2) Åθ = 1.7–28.0º
b = 12.3124 (1) ŵ = 8.02 mm1
c = 11.1541 (1) ÅT = 296 (2) K
β = 127.52 (2)ºBlock, colorless
V = 1871.4 (5) Å30.11 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer2136 independent reflections
Radiation source: fine-focus sealed tube2001 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 296(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(APEX2; Bruker, 2004)h = −22→20
Tmin = 0.435, Tmax = 0.529k = −15→15
10051 measured reflectionsl = −12→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.053  w = 1/[σ2(Fo2) + (0.0241P)2 + 12.727P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2136 reflectionsΔρmax = 0.91 e Å3
132 parametersΔρmin = −0.51 e Å3
10 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.3116 (3)0.3839 (3)0.2419 (4)0.0139 (7)
C20.3805 (3)0.3285 (3)0.2198 (5)0.0174 (7)
H2A0.44620.33250.31480.021*
H2B0.38080.37040.14640.021*
C30.3607 (3)0.2110 (3)0.1686 (4)0.0137 (7)
C40.4246 (2)0.2993 (3)0.6243 (4)0.0119 (7)
C50.50000.3747 (4)0.75000.0135 (10)
H5A0.47030.42050.78290.016*0.50
H5B0.52970.42050.71710.016*0.50
Dy10.283235 (12)0.148077 (13)0.379865 (19)0.01461 (7)
O10.2989 (2)0.4832 (2)0.2144 (4)0.0268 (6)
O20.2741 (2)0.3315 (2)0.2918 (3)0.0165 (5)
O30.3717 (2)0.1844 (2)0.0723 (3)0.0256 (6)
O40.3355 (2)0.14437 (19)0.2259 (3)0.0200 (6)
O50.44917 (18)0.2424 (2)0.5591 (3)0.0192 (5)
O60.34060 (17)0.2909 (2)0.5918 (3)0.0144 (5)
O1W0.1257 (2)0.1789 (2)0.1179 (3)0.0226 (6)
H1W0.07850.20290.11000.034*
H2W0.13690.22300.07560.034*
O2W0.4141 (3)0.0048 (3)0.4897 (5)0.0435 (10)
H3W0.4088−0.05120.52380.065*
H4W0.47000.02530.55380.065*
O3W0.3194 (2)0.0640 (2)0.6116 (4)0.0322 (7)
H6W0.3294−0.00030.63330.048*
H5W0.30190.08890.65930.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0179 (17)0.0087 (15)0.0121 (17)0.0002 (13)0.0077 (15)−0.0012 (13)
C20.0267 (19)0.0119 (16)0.024 (2)−0.0038 (14)0.0211 (18)−0.0010 (14)
C30.0166 (17)0.0121 (16)0.0163 (18)−0.0007 (13)0.0119 (15)−0.0004 (13)
C40.0099 (15)0.0139 (16)0.0082 (16)−0.0002 (12)0.0037 (14)0.0026 (13)
C50.010 (2)0.011 (2)0.014 (2)0.0000.005 (2)0.000
Dy10.01901 (10)0.01230 (10)0.01759 (11)−0.00036 (6)0.01376 (8)−0.00016 (6)
O10.0366 (17)0.0102 (12)0.0372 (18)0.0042 (11)0.0244 (15)0.0062 (12)
O20.0249 (14)0.0116 (12)0.0203 (14)0.0034 (10)0.0175 (12)0.0027 (10)
O30.0474 (18)0.0187 (14)0.0288 (16)−0.0005 (13)0.0326 (16)−0.0014 (12)
O40.0366 (16)0.0100 (12)0.0276 (16)−0.0013 (10)0.0270 (14)−0.0012 (10)
O50.0137 (12)0.0264 (14)0.0183 (13)−0.0008 (10)0.0102 (11)−0.0068 (11)
O60.0104 (11)0.0196 (13)0.0131 (12)−0.0015 (9)0.0072 (10)−0.0016 (10)
O1W0.0206 (14)0.0300 (15)0.0198 (15)−0.0003 (12)0.0137 (12)0.0065 (12)
O2W0.0431 (19)0.0277 (17)0.085 (3)0.0166 (15)0.052 (2)0.0281 (18)
O3W0.063 (2)0.0176 (14)0.0415 (19)0.0177 (14)0.0450 (18)0.0154 (13)

Geometric parameters (Å, °)

C1—O11.247 (4)Dy1—O42.375 (3)
C1—O21.256 (4)Dy1—O22.430 (2)
C1—C21.512 (5)Dy1—O6iii2.452 (2)
C2—C31.516 (5)Dy1—O3W2.487 (3)
C2—H2A0.9700Dy1—O2W2.513 (3)
C2—H2B0.9700Dy1—O1W2.524 (3)
C3—O31.243 (4)Dy1—O52.555 (3)
C3—O41.266 (4)Dy1—O62.610 (2)
C4—O51.254 (4)O1W—H1W0.8155
C4—O61.260 (4)O1W—H2W0.8146
C4—C51.514 (4)O2W—H3W0.8184
C5—C4i1.514 (4)O2W—H4W0.8133
C5—H5A0.9700O3W—H6W0.8149
C5—H5B0.9700O3W—H5W0.8144
Dy1—O1ii2.326 (3)
O1—C1—O2123.5 (3)O4—Dy1—O1W77.10 (10)
O1—C1—C2116.0 (3)O2—Dy1—O1W68.42 (9)
O2—C1—C2120.4 (3)O6iii—Dy1—O1W72.58 (9)
C1—C2—C3118.3 (3)O3W—Dy1—O1W132.74 (10)
C1—C2—H2A107.7O2W—Dy1—O1W132.85 (12)
C3—C2—H2A107.7O1ii—Dy1—O5146.20 (10)
C1—C2—H2B107.7O4—Dy1—O580.87 (9)
C3—C2—H2B107.7O2—Dy1—O570.15 (9)
H2A—C2—H2B107.1O6iii—Dy1—O5113.70 (8)
O3—C3—O4123.0 (3)O3W—Dy1—O585.58 (10)
O3—C3—C2117.3 (3)O2W—Dy1—O572.37 (10)
O4—C3—C2119.7 (3)O1W—Dy1—O5137.36 (9)
O5—C4—O6121.2 (3)O1ii—Dy1—O6141.99 (9)
O5—C4—C5118.7 (3)O4—Dy1—O6124.57 (8)
O6—C4—C5120.1 (3)O2—Dy1—O668.62 (8)
C4—C5—C4i104.4 (4)O6iii—Dy1—O663.60 (9)
C4—C5—H5A110.9O3W—Dy1—O667.78 (9)
C4i—C5—H5A110.9O2W—Dy1—O6107.42 (11)
C4—C5—H5B110.9O1W—Dy1—O6119.61 (9)
C4i—C5—H5B110.9O5—Dy1—O650.15 (8)
H5A—C5—H5B108.9C1—O1—Dy1iv159.0 (3)
O1ii—Dy1—O492.80 (10)C1—O2—Dy1137.0 (2)
O1ii—Dy1—O2139.15 (10)C3—O4—Dy1138.4 (2)
O4—Dy1—O271.67 (8)C4—O5—Dy195.7 (2)
O1ii—Dy1—O6iii89.46 (9)C4—O6—Dy1iii150.4 (2)
O4—Dy1—O6iii147.09 (9)C4—O6—Dy192.9 (2)
O2—Dy1—O6iii85.38 (8)Dy1iii—O6—Dy1116.40 (9)
O1ii—Dy1—O3W78.76 (11)Dy1—O1W—H1W118.3
O4—Dy1—O3W141.16 (9)Dy1—O1W—H2W107.9
O2—Dy1—O3W136.14 (9)H1W—O1W—H2W105.4
O6iii—Dy1—O3W71.36 (9)Dy1—O2W—H3W119.8
O1ii—Dy1—O2W73.98 (11)Dy1—O2W—H4W115.9
O4—Dy1—O2W73.66 (10)H3W—O2W—H4W105.1
O2—Dy1—O2W131.94 (9)Dy1—O3W—H6W126.0
O6iii—Dy1—O2W137.86 (9)Dy1—O3W—H5W124.4
O3W—Dy1—O2W67.55 (10)H6W—O3W—H5W105.5
O1ii—Dy1—O1W71.37 (10)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, −y+1/2, −z+1; (iv) −x+1/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5v0.822.042.854 (4)172
O1W—H2W···O3vi0.811.942.729 (4)165
O2W—H3W···O3vii0.821.952.761 (4)170
O3W—H6W···O4vii0.812.022.802 (4)160
O3W—H6W···O3vii0.812.593.291 (4)144
O3W—H5W···O2iii0.811.962.738 (4)161

Symmetry codes: (v) x−1/2, −y+1/2, z−1/2; (vi) −x+1/2, −y+1/2, −z; (vii) x, −y, z+1/2; (iii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2344).

References

  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Iglesias, S., Castillo, O., Luque, A. & Romaan, P. (2003). Inorg. Chim. Acta, 349, 273–278.
  • Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun.6, 474–477.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography