PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m897.
Published online 2008 June 7. doi:  10.1107/S1600536808017030
PMCID: PMC2961877

Poly[μ-aqua-diaqua­(μ3-N′-carboxy­methyl­ethylenediamine-N,N,N′-tri­acetato)oxidopotassium(I)vanadium(IV)]

Abstract

In the crystal structure of the title compound, [KV(C10H13N2O8)O(H2O)3]n, the VIV ion adopts a distorted octa­hedral geometry, coordinated by one oxide group, two N and three carboxylate O atoms from the same N′-carboxy­methyl­ethyl­ene­diamine-N,N,N′-triacetate (HEDTA) ligand. The potassium ion is hepta­coordinated by two water mol­ecules, two bridging water mol­ecules and three carboxylate O atoms from three neighbouring HEDTA ligands. The HEDTA ligands and some of the water mol­ecules act as bridges, linking the compound into a three-dimensional architecture via 21 screw, c-glide, translation and inversion symmetry operators. Meanwhile, three types of O—H(...)O hydrogen bonds provide an additional stabilization of the three-dimensional architecture.

Related literature

For related literature, see: Crans et al. (2004 [triangle]); Khanra et al. (2007 [triangle]); Tsuchida et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m897-scheme1.jpg

Experimental

Crystal data

  • [KV(C10H13N2O8)O(H2O)3]
  • M r = 449.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m897-efi5.jpg
  • a = 6.6701 (13) Å
  • b = 13.618 (3) Å
  • c = 18.693 (4) Å
  • β = 96.150 (2)°
  • V = 1688.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.90 mm−1
  • T = 298 (2) K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.714, T max = 0.840
  • 6813 measured reflections
  • 2957 independent reflections
  • 2613 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.088
  • S = 1.07
  • 2957 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]) and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017030/fj2120sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017030/fj2120Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2006.

supplementary crystallographic information

Comment

The vanadium complexes have been attracted great attention because of their versatile properties including biological activities(Crans et al., 2004), magnetic property(Khanra et al., 2007), catalytic abilities (Tsuchida et al., 1999) and so on. Especially, we are interested in the protein tyrosine phosphatase 1B (PTP1B) inhibition activity of vanadium compounds. Thus, the title compound (I) was synthesized and its crystal structure is reported here.

The X-ray crystallographic analysis shows that there are two metal ion centres in the asymmetric unit of the title compound(Fig 1). VIV adopts a six coordinated geometry consisting of a O atom(O1) from vanadyl, two N and three carboxyl O atoms(O2, O4 and O6) from same symmetric edta ligand while potassium is hepta-coordinated by two water molecules, two bridging water molecules and three carboxyl O atoms (O3, O5 and O9) respectively from three neighbouring edta ligands with different symmetry. Each edta ligand acts as a bridge simultaneously coordinating to three neighbouring K+ ions while coordinating to one vanadium. Neighbouring K+ ions are bridged through two coordinated water molecules(O10). As the result of these coordination, the compound is constructed to three-dimensional structure by O9 atom via 21-screw, O3 via c-glide & translation and K1 via inversion & translation(Fig 2). Meanwhile, three types of O—H···O hydrogen bonds (Table 1) take part in the stabilization of the three-dimensional architecture(Fig 2). The first type is the coordination water O atoms (O10, O11 and O12) acting as H donors while carboxyl O atoms(O4, O5, O6 and O7) of edta ligands as acceptors. The second is between coordination water molecules[O12—H12B···O11(-x, 2 - y, 1 - z) and O10—H10A···O12(1 + x, y, z)]. The third type of O8—H8···O3(1 - x, 2 - y, -y) hydrogen bond joins neighbouring edta ligands.

Experimental

All chemicals were of reagent grade, were commercially available and were used without further purification. H4EDTA(11.69 g, 40 mmol) was added to 100 ml of water and neutralized with 11.20 g (80 mmol) of Potassium carbonate. 6.52 g (40 mmol) of VOSO4 was added to the solution, stirred for 24 h. Evaporation of the solution using a rotary evaporator was concentrated to 20 ml, then the solution with blue flocculent crystals was filtered, The blue crystals were obtained by slow evaporation of the solvent about two days at room temperature.

Refinement

H atoms attached to C and O(EDTA) atoms of (I) were placed in geometrically idealized positions with Csp3—H = 0.97 and O—H = 0.82Å and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(1.5Ueqfor methyl H). H atoms attached to O(water) atoms of (I) were located from difference Fourier maps and refined with a global Uiso value.

Figures

Fig. 1.
A view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: i -x, y + 1/2, -z + 1/2; ii x, -y + 3/2, z - 1/2; iii -x, -y + 2, -z
Fig. 2.
The packing view in the title complex (I).

Crystal data

[KV(C10H13N2O8)O(H2O1)3]F000 = 924
Mr = 449.31Dx = 1.768 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3074 reflections
a = 6.6701 (13) Åθ = 2.1–26.6º
b = 13.618 (3) ŵ = 0.90 mm1
c = 18.693 (4) ÅT = 298 (2) K
β = 96.150 (2)ºBlock, blue
V = 1688.2 (6) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1K CCD diffractometer2957 independent reflections
Radiation source: fine-focus sealed tube2613 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 298(2) Kθmax = 25.0º
ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)h = −7→7
Tmin = 0.714, Tmax = 0.840k = −16→16
6813 measured reflectionsl = −12→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.088  w = 1/[σ2(Fo2) + (0.0425P)2 + 0.6912P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2957 reflectionsΔρmax = 0.33 e Å3
236 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.46422 (6)1.03027 (3)0.20517 (2)0.02305 (14)
N10.2470 (3)0.90064 (14)0.21295 (10)0.0229 (4)
N20.2025 (3)1.08521 (14)0.13790 (10)0.0226 (4)
C10.4610 (4)0.85480 (18)0.11714 (13)0.0268 (5)
C20.3056 (4)0.82187 (17)0.16472 (13)0.0272 (5)
H2A0.18670.79940.13480.033*
H2B0.35890.76680.19360.033*
C30.4930 (4)0.88638 (17)0.31905 (13)0.0274 (6)
C40.2772 (4)0.86957 (19)0.28900 (13)0.0288 (6)
H4A0.24420.80050.29260.035*
H4B0.18830.90670.31670.035*
C50.0432 (4)0.93920 (17)0.18987 (13)0.0260 (5)
H5A−0.00440.97780.22830.031*
H5B−0.04990.88520.17890.031*
C60.0520 (4)1.00233 (18)0.12396 (13)0.0269 (5)
H6A−0.08061.02960.10950.032*
H6B0.08970.96200.08470.032*
C70.1193 (4)1.16469 (18)0.18111 (13)0.0281 (6)
H7A−0.02631.16600.17060.034*
H7B0.17111.22750.16690.034*
C80.1722 (4)1.15125 (17)0.26067 (14)0.0296 (6)
C90.2569 (4)1.12454 (18)0.06851 (13)0.0261 (5)
H9A0.31201.07150.04200.031*
H9B0.36221.17330.07850.031*
C100.0834 (4)1.17089 (18)0.02109 (13)0.0284 (6)
K10.31886 (9)0.85434 (4)0.49345 (3)0.03673 (17)
O10.6281 (3)1.11296 (13)0.19480 (10)0.0388 (5)
O20.5346 (3)0.94067 (12)0.12620 (9)0.0288 (4)
O30.5115 (3)0.79597 (13)0.07183 (10)0.0363 (4)
O40.5988 (3)0.94463 (12)0.28376 (9)0.0305 (4)
O50.5578 (3)0.84570 (13)0.37597 (10)0.0365 (4)
O60.3143 (3)1.08920 (12)0.28047 (9)0.0315 (4)
O70.0813 (3)1.19822 (14)0.30238 (10)0.0454 (5)
O80.1269 (3)1.20678 (14)−0.04052 (9)0.0370 (4)
H80.24531.1952−0.04550.056*
O9−0.0876 (3)1.17595 (15)0.03675 (10)0.0412 (5)
O100.6764 (3)0.94372 (15)0.56121 (11)0.0502 (5)
H10A0.77310.92050.54340.075*
H10B0.68860.92150.60220.075*
O110.1732 (3)0.91295 (14)0.61935 (10)0.0474 (5)
H11A0.10170.87430.63870.071*
H11B0.22790.94420.65350.071*
O12−0.0659 (3)0.90505 (16)0.44337 (13)0.0578 (6)
H12A−0.16760.88280.42050.087*
H12B−0.06260.96150.42820.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.0205 (2)0.0245 (2)0.0242 (2)−0.00226 (16)0.00252 (16)−0.00034 (16)
N10.0218 (11)0.0252 (10)0.0219 (10)0.0000 (8)0.0039 (8)0.0015 (8)
N20.0232 (11)0.0233 (10)0.0221 (10)0.0013 (8)0.0054 (8)0.0025 (8)
C10.0241 (13)0.0295 (13)0.0264 (13)0.0031 (10)0.0010 (10)−0.0001 (11)
C20.0270 (13)0.0224 (12)0.0325 (14)−0.0007 (10)0.0042 (11)−0.0018 (10)
C30.0305 (14)0.0238 (12)0.0278 (14)0.0042 (11)0.0029 (11)0.0005 (11)
C40.0305 (14)0.0316 (13)0.0251 (13)−0.0019 (11)0.0062 (11)0.0051 (11)
C50.0197 (12)0.0272 (12)0.0316 (14)−0.0025 (10)0.0044 (10)−0.0008 (11)
C60.0218 (13)0.0274 (12)0.0306 (13)−0.0036 (10)−0.0017 (10)−0.0005 (11)
C70.0272 (14)0.0266 (13)0.0314 (14)0.0028 (10)0.0072 (11)−0.0028 (10)
C80.0315 (15)0.0262 (13)0.0328 (14)−0.0052 (11)0.0104 (11)−0.0047 (11)
C90.0273 (13)0.0277 (12)0.0241 (12)0.0005 (10)0.0062 (10)0.0016 (10)
C100.0296 (15)0.0282 (13)0.0269 (13)−0.0011 (11)0.0008 (11)0.0002 (10)
K10.0338 (3)0.0413 (3)0.0348 (3)0.0010 (3)0.0025 (3)0.0065 (3)
O10.0319 (11)0.0358 (10)0.0487 (12)−0.0090 (8)0.0045 (9)−0.0002 (9)
O20.0296 (10)0.0285 (9)0.0300 (9)−0.0030 (8)0.0107 (8)−0.0029 (7)
O30.0370 (11)0.0372 (10)0.0363 (10)−0.0014 (8)0.0108 (8)−0.0116 (9)
O40.0261 (10)0.0341 (9)0.0306 (10)−0.0011 (8)0.0002 (7)0.0061 (8)
O50.0387 (11)0.0381 (10)0.0311 (10)0.0021 (8)−0.0033 (8)0.0072 (8)
O60.0385 (11)0.0340 (9)0.0226 (9)0.0048 (8)0.0055 (8)−0.0027 (7)
O70.0574 (13)0.0446 (11)0.0372 (11)0.0087 (10)0.0187 (10)−0.0100 (9)
O80.0336 (11)0.0506 (12)0.0272 (10)0.0050 (9)0.0050 (8)0.0086 (9)
O90.0268 (11)0.0532 (12)0.0443 (12)0.0067 (9)0.0071 (9)0.0162 (9)
O100.0508 (13)0.0523 (12)0.0461 (12)−0.0007 (10)−0.0017 (10)0.0093 (10)
O110.0568 (14)0.0454 (12)0.0398 (12)−0.0081 (10)0.0037 (10)0.0008 (9)
O120.0492 (14)0.0465 (12)0.0727 (16)−0.0020 (10)−0.0155 (11)0.0145 (11)

Geometric parameters (Å, °)

V1—O11.5955 (18)C7—H7A0.9700
V1—O61.9815 (17)C7—H7B0.9700
V1—O22.0092 (16)C8—O71.219 (3)
V1—O42.0104 (17)C8—O61.294 (3)
V1—N22.172 (2)C9—C101.518 (3)
V1—N12.298 (2)C9—H9A0.9700
N1—C41.476 (3)C9—H9B0.9700
N1—C51.478 (3)C10—O91.210 (3)
N1—C21.481 (3)C10—O81.312 (3)
N2—C91.484 (3)K1—O122.725 (2)
N2—C71.493 (3)K1—O3i2.7539 (19)
N2—C61.514 (3)K1—O112.758 (2)
C1—O31.238 (3)K1—O102.851 (2)
C1—O21.272 (3)K1—O52.851 (2)
C1—C21.505 (3)K1—O9ii2.900 (2)
C2—H2A0.9700K1—O10iii2.935 (2)
C2—H2B0.9700K1—K1iii4.6380 (14)
C3—O51.236 (3)K1—H12B3.0701
C3—O41.289 (3)O3—K1iv2.7539 (19)
C3—C41.505 (4)O8—H80.8200
C4—H4A0.9700O9—K1v2.900 (2)
C4—H4B0.9700O10—K1iii2.935 (2)
C5—C61.509 (3)O10—H10A0.8199
C5—H5A0.9700O10—H10B0.8200
C5—H5B0.9700O11—H11A0.8200
C6—H6A0.9700O11—H11B0.8200
C6—H6B0.9700O12—H12A0.8200
C7—C81.502 (4)O12—H12B0.8200
O1—V1—O6101.82 (9)O6—C8—C7116.7 (2)
O1—V1—O297.02 (8)N2—C9—C10114.7 (2)
O6—V1—O2160.61 (7)N2—C9—H9A108.6
O1—V1—O4103.90 (9)C10—C9—H9A108.6
O6—V1—O486.31 (7)N2—C9—H9B108.6
O2—V1—O493.63 (7)C10—C9—H9B108.6
O1—V1—N2101.83 (9)H9A—C9—H9B107.6
O6—V1—N280.59 (7)O9—C10—O8119.6 (2)
O2—V1—N291.17 (7)O9—C10—C9124.2 (2)
O4—V1—N2153.01 (7)O8—C10—C9116.2 (2)
O1—V1—N1174.01 (9)O12—K1—O3i137.71 (6)
O6—V1—N184.06 (7)O12—K1—O1179.34 (7)
O2—V1—N177.21 (7)O3i—K1—O1187.02 (6)
O4—V1—N175.13 (7)O12—K1—O10139.18 (7)
N2—V1—N180.10 (7)O3i—K1—O1076.15 (6)
C4—N1—C5114.18 (18)O11—K1—O1081.47 (7)
C4—N1—C2111.16 (19)O12—K1—O5109.24 (7)
C5—N1—C2111.99 (19)O3i—K1—O596.41 (5)
C4—N1—V1105.01 (14)O11—K1—O5161.12 (6)
C5—N1—V1105.97 (13)O10—K1—O581.36 (6)
C2—N1—V1107.95 (14)O12—K1—O9ii71.57 (6)
C9—N2—C7110.56 (18)O3i—K1—O9ii71.89 (6)
C9—N2—C6109.77 (18)O11—K1—O9ii100.37 (6)
C7—N2—C6110.82 (18)O10—K1—O9ii147.80 (6)
C9—N2—V1111.95 (14)O5—K1—O9ii98.34 (5)
C7—N2—V1105.00 (14)O12—K1—O10iii71.81 (6)
C6—N2—V1108.65 (14)O3i—K1—O10iii149.29 (6)
O3—C1—O2123.8 (2)O11—K1—O10iii92.51 (6)
O3—C1—C2117.8 (2)O10—K1—O10iii73.43 (7)
O2—C1—C2118.4 (2)O5—K1—O10iii75.09 (6)
N1—C2—C1112.82 (19)O9ii—K1—O10iii137.93 (6)
N1—C2—H2A109.0O12—K1—K1iii105.52 (5)
C1—C2—H2A109.0O3i—K1—K1iii113.39 (5)
N1—C2—H2B109.0O11—K1—K1iii86.36 (5)
C1—C2—H2B109.0O10—K1—K1iii37.34 (4)
H2A—C2—H2B107.8O5—K1—K1iii75.22 (4)
O5—C3—O4123.8 (2)O9ii—K1—K1iii171.84 (5)
O5—C3—C4119.0 (2)O10iii—K1—K1iii36.09 (4)
O4—C3—C4117.2 (2)O12—K1—H12B14.8
N1—C4—C3110.02 (19)O3i—K1—H12B152.2
N1—C4—H4A109.7O11—K1—H12B81.3
C3—C4—H4A109.7O10—K1—H12B126.3
N1—C4—H4B109.7O5—K1—H12B102.8
C3—C4—H4B109.7O9ii—K1—H12B85.4
H4A—C4—H4B108.2O10iii—K1—H12B57.0
N1—C5—C6109.02 (19)K1iii—K1—H12B91.1
N1—C5—H5A109.9C1—O2—V1122.60 (15)
C6—C5—H5A109.9C1—O3—K1iv134.36 (16)
N1—C5—H5B109.9C3—O4—V1120.32 (16)
C6—C5—H5B109.9C3—O5—K1118.15 (16)
H5A—C5—H5B108.3C8—O6—V1118.11 (15)
C5—C6—N2111.54 (19)C10—O8—H8109.5
C5—C6—H6A109.3C10—O9—K1v119.74 (16)
N2—C6—H6A109.3K1—O10—K1iii106.57 (7)
C5—C6—H6B109.3K1—O10—H10A108.2
N2—C6—H6B109.3K1iii—O10—H10A100.5
H6A—C6—H6B108.0K1—O10—H10B104.6
N2—C7—C8112.7 (2)K1iii—O10—H10B131.8
N2—C7—H7A109.1H10A—O10—H10B103.5
C8—C7—H7A109.1K1—O11—H11A117.7
N2—C7—H7B109.1K1—O11—H11B130.3
C8—C7—H7B109.1H11A—O11—H11B102.8
H7A—C7—H7B107.8K1—O12—H12A141.4
O7—C8—O6124.0 (2)K1—O12—H12B107.3
O7—C8—C7119.3 (2)H12A—O12—H12B102.5
O6—V1—N1—C4−57.66 (15)N2—C7—C8—O7−165.0 (2)
O2—V1—N1—C4127.40 (15)N2—C7—C8—O615.1 (3)
O4—V1—N1—C430.08 (14)C7—N2—C9—C10−59.1 (3)
N2—V1—N1—C4−139.11 (15)C6—N2—C9—C1063.5 (2)
O6—V1—N1—C563.53 (14)V1—N2—C9—C10−175.79 (16)
O2—V1—N1—C5−111.41 (15)N2—C9—C10—O9−0.5 (4)
O4—V1—N1—C5151.27 (15)N2—C9—C10—O8179.7 (2)
N2—V1—N1—C5−17.92 (14)O3—C1—O2—V1−175.28 (19)
O6—V1—N1—C2−176.33 (15)C2—C1—O2—V13.9 (3)
O2—V1—N1—C28.74 (14)O1—V1—O2—C1171.07 (19)
O4—V1—N1—C2−88.59 (15)O6—V1—O2—C1−22.6 (3)
N2—V1—N1—C2102.23 (15)O4—V1—O2—C166.57 (19)
O1—V1—N2—C942.20 (16)N2—V1—O2—C1−86.86 (19)
O6—V1—N2—C9142.42 (16)N1—V1—O2—C1−7.28 (18)
O2—V1—N2—C9−55.22 (15)O2—C1—O3—K1iv−150.33 (18)
O4—V1—N2—C9−155.57 (16)C2—C1—O3—K1iv30.5 (3)
N1—V1—N2—C9−132.03 (15)O5—C3—O4—V1−165.98 (18)
O1—V1—N2—C7−77.80 (15)C4—C3—O4—V112.8 (3)
O6—V1—N2—C722.42 (14)O1—V1—O4—C3161.53 (18)
O2—V1—N2—C7−175.22 (14)O6—V1—O4—C360.26 (18)
O4—V1—N2—C784.4 (2)O2—V1—O4—C3−100.31 (18)
N1—V1—N2—C7107.97 (14)N2—V1—O4—C3−0.5 (3)
O1—V1—N2—C6163.60 (15)N1—V1—O4—C3−24.57 (17)
O6—V1—N2—C6−96.18 (14)O4—C3—O5—K1131.8 (2)
O2—V1—N2—C666.17 (14)C4—C3—O5—K1−46.9 (3)
O4—V1—N2—C6−34.2 (2)O12—K1—O5—C317.34 (19)
N1—V1—N2—C6−10.63 (14)O3i—K1—O5—C3163.20 (17)
C4—N1—C2—C1−124.2 (2)O11—K1—O5—C3−97.2 (2)
C5—N1—C2—C1106.8 (2)O10—K1—O5—C3−121.92 (18)
V1—N1—C2—C1−9.5 (2)O9ii—K1—O5—C390.64 (18)
O3—C1—C2—N1−175.9 (2)O10iii—K1—O5—C3−46.87 (17)
O2—C1—C2—N14.9 (3)K1iii—K1—O5—C3−84.25 (17)
C5—N1—C4—C3−148.1 (2)O7—C8—O6—V1−173.6 (2)
C2—N1—C4—C384.1 (2)C7—C8—O6—V16.3 (3)
V1—N1—C4—C3−32.4 (2)O1—V1—O6—C883.24 (19)
O5—C3—C4—N1−164.2 (2)O2—V1—O6—C8−82.9 (3)
O4—C3—C4—N117.0 (3)O4—V1—O6—C8−173.32 (18)
C4—N1—C5—C6158.6 (2)N2—V1—O6—C8−17.00 (17)
C2—N1—C5—C6−73.9 (2)N1—V1—O6—C8−97.91 (18)
V1—N1—C5—C643.5 (2)O8—C10—O9—K1v−41.5 (3)
N1—C5—C6—N2−57.1 (3)C9—C10—O9—K1v138.70 (19)
C9—N2—C6—C5161.47 (19)O12—K1—O10—K1iii−32.58 (13)
C7—N2—C6—C5−76.1 (2)O3i—K1—O10—K1iii175.77 (8)
V1—N2—C6—C538.7 (2)O11—K1—O10—K1iii−95.21 (7)
C9—N2—C7—C8−146.5 (2)O5—K1—O10—K1iii76.92 (7)
C6—N2—C7—C891.6 (2)O9ii—K1—O10—K1iii168.86 (8)
V1—N2—C7—C8−25.6 (2)O10iii—K1—O10—K1iii0.0

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) x, −y+3/2, z−1/2; (v) −x, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O8—H8···O3vi0.821.752.542 (3)162
O12—H12B···O11vii0.822.032.802 (3)157
O11—H11B···O4iii0.822.172.960 (3)162
O10—H10B···O6iii0.822.202.987 (3)161
O12—H12A···O5viii0.821.992.804 (3)169
O11—H11A···O7vii0.821.992.801 (3)169
O10—H10A···O12ix0.822.262.983 (3)147

Symmetry codes: (vi) −x+1, −y+2, −z; (vii) −x, −y+2, −z+1; (iii) −x+1, −y+2, −z+1; (viii) x−1, y, z; (ix) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2120).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev.104, 849–902. [PubMed]
  • Khanra, S., Kloth, M., Mansaray, H., Muryn, C. A., Tuna, F., Sanudo, E. C., Helliwell, M., McInnes, E. J. L. & Winpenny, R. E. P. (2007). Angew. Chem. Int. Ed.46, 5568–5571. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tsuchida, E., Oyaizu, K., Listiani Dewi, E., Imai, T. & Anson, F. C. (1999). Inorg. Chem.38, 3704–3708. [PubMed]
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography